Methods for measuring soil water content

Authors

  • Urša PEČAN University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana Slovenia
  • Vesna ZUPANC University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana Slovenia
  • Marina PINTAR University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana Slovenia

DOI:

https://doi.org/10.14720/aas.2021.117.2.1618

Keywords:

measurement, water content, soil, precision irrigation, dielectric sensors, calibration, TDR, FD

Abstract

Water has a significant influence on fundamental biophysical processes in the soil. It is one of the limiting factors for plant growth, which is why monitoring the water content in the field is particularly important in agriculture. In this article we present the methods currently used to measure the soil water content. We have described their functional principles, advantages, disadvantages and possible applications. Due to their widespread use in agriculture, we have focused on dielectric sensors, which are classified as electromagnetic methods. We have investigated the influence of soil properties on measurements with dielectric sensors and described possible methods for soil-specific calibration. In agriculture and environmental sciences, measurements of soil water content are particularly important for irrigation management. Irrigation based on measurements enables us to optimize the use of water resources and reduce the negative impact on the environment. For the correct functioning of such sensors it is necessary to check the suitability of the factory calibration function. Special attention is required when installing the sensors, as the presence of air gaps causes errors in the measurements.

Author Biographies

  • Urša PEČAN, University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana Slovenia

    Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo

    Urša Pečan, mag. inž. agr.

  • Vesna ZUPANC, University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana Slovenia

    Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo

    doc. dr. Vesna Zupanc, univ. dipl. inž. agr, mag. hidr. znan.

  • Marina PINTAR, University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana Slovenia

    Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo

    prof. dr. Marina Pintar, univ. dipl. inž. agr

References

Adeyemi, O., Grove, I., Peets, S., & Norton, T. (2017). Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability, 9(3), 353. https://doi.org/10.3390/su9030353 DOI: https://doi.org/10.3390/su9030353

Annan, A. P. (2002). GPR—History, Trends, and Future Developments. Subsurface Sensing Technologies and Applications, 3(4), 253–270. https://doi.org/10.1023/A:1020657129590 DOI: https://doi.org/10.1023/A:1020657129590

Bayer, A., Mahbub, I., Chappell, M., Ruter, J., & van Iersel, M. W. (2013). Water Use and Growth of Hibiscus acetosella “Panama Red” Grown with a Soil Moisture Sensor-controlled Irrigation System. Hortscience, 48(8), 980–987. https://doi.org/10.21273/HORTSCI.48.8.980 DOI: https://doi.org/10.21273/HORTSCI.48.8.980

Bittelli, M. (2011). Measuring Soil Water Content: A Review. HortTechnology, 293–300. https://doi.org/10.21273/HORTTECH.21.3.293 DOI: https://doi.org/10.21273/HORTTECH.21.3.293

Blonquist Jr., J. M., Jones, S. B., & Robinson, D. A. (2005). A time domain transmission sensor with TDR performance characteristics. Journal of Hydrology, 314(1), 235–245. https://doi.org/10.1016/j.jhydrol.2005.04.005 DOI: https://doi.org/10.1016/j.jhydrol.2005.04.005

Blonquist, J. M., Jones, S. B., & Robinson, D. A. (2006). Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management, 84(1), 153–165. https://doi.org/10.1016/j.agwat.2006.01.014 DOI: https://doi.org/10.1016/j.agwat.2006.01.014

Bogena, H.R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1–2), 32–42. https://doi.org/10.1016/j.jhydrol.2007.06.032 DOI: https://doi.org/10.1016/j.jhydrol.2007.06.032

Bogena, Heye Reemt, Huisman, J. A., Schilling, B., Weuthen, A., & Vereecken, H. (2017). Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors, 17(1), 208. https://doi.org/10.3390/s17010208 DOI: https://doi.org/10.3390/s17010208

Chanzy, A., Gaudu, J.-C., & Marloie, O. (2012). Correcting the temperature influence on soil capacitance sensors using diurnal temperature and water content cycles. Sensors, 12(7), 9773–9790. https://doi.org/10.3390/s120709773 DOI: https://doi.org/10.3390/s120709773

Chen, H. B., Ye, L. M., & Shi, L. K. (2013). An analysis of the effects on calibration parameters of FDR for moisture sensor caused by different kinds of soils. Applied Mechanics and Materials; Zurich, 401–403, 968. http://dx.doi.org/10.4028/www.scientific.net/AMM.401-403.968 DOI: https://doi.org/10.4028/www.scientific.net/AMM.401-403.968

Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A., & Basile, A. (2013). Measuring and modeling water content in stony soils. Soil and Tillage Research, 128, 9–22. https://doi.org/10.1016/j.still.2012.10.006 DOI: https://doi.org/10.1016/j.still.2012.10.006

Cosh, M. H., Jackson, T. J., Bindlish, R., Famiglietti, J. S., & Ryu, D. (2005). Calibration of an impedance probe for estimation of surface soil water content over large regions. Journal of Hydrology, 311(1–4), 49–58. https://doi.org/10.1016/j.jhydrol.2005.01.003 DOI: https://doi.org/10.1016/j.jhydrol.2005.01.003

Davis, J. L., Annan, A. P. (2002). Ground penetrating radar to measure soil water content. V: Dane, J. H., Topp, G. C. (ed.) Methods of Soil Analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series

Dean, T. J., Bell, J. P., & Baty, A. J. B. (1987). Soil moisture measurement by an improved capacitance technique, Part I. Sensor design and performance. Journal of Hydrology, 93(1), 67–78. https://doi.org/10.1016/0022-1694(87)90194-6 DOI: https://doi.org/10.1016/0022-1694(87)90194-6

Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458–459, 110–117. https://doi.org/10.1016/j.jhydrol.2012.06.021 DOI: https://doi.org/10.1016/j.jhydrol.2012.06.021

Domínguez-Niño, J. M., Bogena, H. R., Huisman, J. A., Schilling, B., & Casadesús, J. (2019). On the accuracy of factory-calibrated low-cost soil water content sensors. Sensors, 19(14). https://doi.org/10.3390/s19143101 DOI: https://doi.org/10.3390/s19143101

Evett, S.R. (2000) Some aspects of time domain reflectometry, neutron scattering and capacitance methods for soil water content measurement; International Atomic Energy Agency: Vienna, Austria, 2000: 5-50 str. https://inis.iaea.org/search/search.aspx?orig_q=RN:31014385 (26.3.2020)

Evett, S. R., & Parkin, G. W. (2005). Advances in soil water content sensing. Vadose Zone Journal, 4(4), 986. https://doi.org/10.2136/vzj2005.0099 DOI: https://doi.org/10.2136/vzj2005.0099

Evett, Steven R., Tolk, J. A., & Howell, T. A. (2006). Soil profile water content determination. Vadose Zone Journal, 5(3), 894. https://doi.org/10.2136/vzj2005.0149 DOI: https://doi.org/10.2136/vzj2005.0149

Fares, A., & Alva, A. K. (2000). Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrigation Science, 19(2), 57–64. https://doi.org/10.1007/s002710050001 DOI: https://doi.org/10.1007/s002710050001

Fares, A., Abbas, F., Maria, D., & Mair, A. (2011). Improved calibration functions of three capacitance probes for the measurement of soil moisture in tropical soils. Sensors, 11(5), 4858–4874. https://doi.org/10.3390/s110504858 DOI: https://doi.org/10.3390/s110504858

Fares, A., Awal, R., & Bayabil, H. K. (2016). Soil water content sensor response to organic matter content under laboratory conditions. Sensors, 16(8). https://doi.org/10.3390/s16081239 DOI: https://doi.org/10.3390/s16081239

Fellner-Feldegg, H. (1969). Measurement of dielectrics in the time domain. The Journal of Physical Chemistry, 73(3), 616–623. https://doi.org/10.1021/j100723a023 DOI: https://doi.org/10.1021/j100723a023

Gaskin, G. J., & Miller, J. D. (1996). Measurement of soil water content using a simplified impedance measuring technique. Journal of Agricultural Engineering Research, 63(2), 153–159. https://doi.org/10.1006/jaer.1996.0017 DOI: https://doi.org/10.1006/jaer.1996.0017

Geesing, D., Bachmaier, M., & Schmidhalter, U. (2004). Field calibration of a capacitance soil water probe in heterogeneous fields. Australian Journal of Soil Research, 42. https://doi.org/10.1071/SR03051 DOI: https://doi.org/10.1071/SR03051

Gherboudj, I., Magagi, R., Berg, A. A., & Toth, B. (2017). Characterization of the spatial variability of in-situ soil moisture measurements for upscaling at the spatial resolution of RADARSAT-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 1813–1823. https://doi.org/10.1109/JSTARS.2017.2649219 DOI: https://doi.org/10.1109/JSTARS.2017.2649219

Gong, Y., Cao, Q., & Sun, Z. (2003). The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrological Processes, 17(18), 3601–3614. https://doi.org/10.1002/hyp.1358 DOI: https://doi.org/10.1002/hyp.1358

Gonzalez-Teruel, J. D., Torres-Sanchez, R., Blaya-Ros, P. J., Toledo-Moreo, A. B., Jimenez-Buendia, M., & Soto-Valles, F. (2019). Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19(3), 491. https://doi.org/10.3390/s19030491 DOI: https://doi.org/10.3390/s19030491

Gardner, W., & Kirkham, D. (1952). Determination of soil moisture by neutron scattering: Soil Science, 73(5), 391–402. https://doi.org/10.1097/00010694-195205000-00007 DOI: https://doi.org/10.1097/00010694-195205000-00007

Hanson, B. R, Peters, D., (2000) Soil type affects accuracy of dielectric moisture sensors. California Agriculture, 54(3), 43-47. https://doi.org/10.3733/ca.v054n03p43 DOI: https://doi.org/10.3733/ca.v054n03p43

Hajdu, I., Yule, I., Bretherton, M., Singh, R., & Hedley, C. (2019). Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils. Agricultural Water Management, 217, 332–345. https://doi.org/10.1016/j.agwat.2019.03.002 DOI: https://doi.org/10.1016/j.agwat.2019.03.002

Heng, L. K., Evett, S. (2008). Tensiometers. V: Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology. Training course series 30. Vienna, International Atomic Energy Agency: 113-121

Hignett, C., Evett, S. (2008). Direct and surrogate measures of soil water content. V: field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology. Training course series 30. Vienna, International Atomic Energy Agency: 1-21

Holzman, M., Rivas, R., Carmona, F., & Niclos, R. (2017). A method for soil moisture probes calibration and validation of satellite estimates. Methodsx, 4, 243–249. https://doi.org/10.1016/j.mex.2017.07.004 DOI: https://doi.org/10.1016/j.mex.2017.07.004

Huisman, J. A., Sperl, C., Bouten, W., & Verstraten, J. M. (2001). Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology, 245(1–4), 48–58. https://doi.org/10.1016/S0022-1694(01)00336-5 DOI: https://doi.org/10.1016/S0022-1694(01)00336-5

IMKO. (1996). Theoretical aspects on measuring moisture using TRIME®.

IMKO Micromodultechnik GmbH, Ettlingen, Germany. Cit po: Dettmann, U., & Bechtold, M. (2018). Evaluating commercial moisture probes in reference solutions covering mineral to peat soil conditions. Vadose Zone Journal, 17(1), 0. https://doi.org/10.2136/vzj2017.12.0208 DOI: https://doi.org/10.2136/vzj2017.12.0208

Incrocci, L., Marzialetti, P., Incrocci, G., Di Vita, A., Balendonck, J., Bibbiani, C., Spagnol, S., & Pardossi, A. (2019). Sensor-based management of container nursery crops irrigated with fresh or saline water. Agricultural Water Management, 213, 49–61. https://doi.org/10.1016/j.agwat.2018.09.054 DOI: https://doi.org/10.1016/j.agwat.2018.09.054

ISO 11465. Soil quality - Determination of dry matter and water content on a mass basis - Gravimetric method. (1993): 3 str.

Iwata, Y., Miyamoto, T., Kameyama, K., & Nishiya, M. (2017). Effect of sensor installation on the accurate measurement of soil water content. European Journal of Soil Science, 68(6), 817–828. https://doi.org/10.1111/ejss.12493 DOI: https://doi.org/10.1111/ejss.12493

Jones, S. B., Wraith, J. M., & Or, D. (2002). Time domain reflectometry measurement principles and applications. Hydrological Processes, 16(1), 141–153. https://doi.org/10.1002/hyp.513 DOI: https://doi.org/10.1002/hyp.513

Kaptein, N. D., Light, M. E., & Savage, M. J. (2019). Sensors for the improvement of irrigation efficiency in nurseries. Water, 45(3), 527–535. https://doi.org/10.17159/wsa/2019.v45.i3.6750 DOI: https://doi.org/10.17159/wsa/2019.v45.i3.6750

Kassaye, K. T., Boulange, J., Saito, H., & Watanabe, H. (2019). Calibration of capacitance sensor for Andosol under field and laboratory conditions in the temperate monsoon climate. Soil and Tillage Research, 189, 52–63. https://doi.org/10.1016/j.still.2018.12.020 DOI: https://doi.org/10.1016/j.still.2018.12.020

Kinzli, K.-D., Manana, N., & Oad, R. (2012). Comparison of laboratory and field calibration of a soil-moisture capacitance probe for various soils. Journal of Irrigation & Drainage Engineering, 138(4), 310–321. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000418 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000418

Knight, R. (2001). Ground penetrating radar for environmental applications. Annual Review of Earth & Planetary Sciences, 29(1), 229. https://doi.org/10.1146/annurev.earth.29.1.229 DOI: https://doi.org/10.1146/annurev.earth.29.1.229

Lauer, D. T. (1997). The Landsat program: its origins, evolution, and impacts. Photogrammetric Engineering & Remote Sensing, 63(7), 831-383

Lekshmi, S. U. S., Singh, D. N., Baghini, M. S. (2014). A critical review of soil moisture measurement. Measurement, 54, 92-105 DOI: https://doi.org/10.1016/j.measurement.2014.04.007

Li, D., Franssen, H.-J. H., Han, X., Angel Jimenez-Bello, M., Martinez Alzamora, F., & Vereecken, H. (2018). Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain. Agricultural Water Management, 208, 465–477. https://doi.org/10.1016/j.agwat.2018.06.022 DOI: https://doi.org/10.1016/j.agwat.2018.06.022

Lozoya, C., Mendoza, C., Aguilar, A., Roman, A., & Castello, R. (2016). Sensor-based model driven control strategy for precision irrigation. Journal of Sensors, 9784071. https://doi.org/10.1155/2016/9784071 DOI: https://doi.org/10.1155/2016/9784071

Malicki, M. A., Plagge, R., & Roth, C. H. (1996). Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European Journal of Soil Science, 47(3), 357–366. https://doi.org/10.1111/j.1365-2389.1996.tb01409.x DOI: https://doi.org/10.1111/j.1365-2389.1996.tb01409.x

Malmberg, C. G., & Maryott, A. A. (1956). Dielectric constant of water from 0 to 100 C. Journal of Research of the National Bureau of Standards, 56(1), 1. https://doi.org/10.6028/jres.056.001 DOI: https://doi.org/10.6028/jres.056.001

Matula, S., Batkova, K., & Legese, W. L. (2016). Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors, 16(11), 1912. https://doi.org/10.3390/s16111912 DOI: https://doi.org/10.3390/s16111912

Millan, S., Casadesus, J., Campillo, C., Jose Monino, M., & Henar Prieto, M. (2019). Using soil moisture sensors for automated irrigation scheduling in a plum crop. Water, 11(10), 2061. https://doi.org/10.3390/w11102061 DOI: https://doi.org/10.3390/w11102061

Mittelbach, H., Lehner, I., & Seneviratne, S. I. (2012). Comparison of four soil moisture sensor types under field conditions in Switzerland. Journal of Hydrology, 430–431, 39–49. https://doi.org/10.1016/j.jhydrol.2012.01.041 DOI: https://doi.org/10.1016/j.jhydrol.2012.01.041

Muñoz-Carpena, R. (2004). Field devices for monitoring soil water content. Agricultural and Biological Engineering Department, University of Florida. BUL343 (https://edis.ifas.ufl.edu/ae266) 21. 6. 2019

Nemali, K. S., & van Iersel, M. W. (2006). An automated system for controlling drought stress and irrigation in potted plants. Scientia Horticulturae, 110(3), 292–297. https://doi.org/10.1016/j.scienta.2006.07.009 DOI: https://doi.org/10.1016/j.scienta.2006.07.009

Nemali, K. S., Montesano, F., Dove, S. K., & van Iersel, M. W. (2007). Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Scientia Horticulturae, 112(2), 227–234. https://doi.org/10.1016/j.scienta.2006.12.013 DOI: https://doi.org/10.1016/j.scienta.2006.12.013

Noborio, K. (2001). Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Computers and Electronics in Agriculture, 31(3), 213–237. https://doi.org/10.1016/S0168-1699(00)00184-8 DOI: https://doi.org/10.1016/S0168-1699(00)00184-8

Ojo, E. R., Bullock, P. R., & Fitzmaurice, J. (2015). Field performance of five soil moisture instruments in heavy clay soils. Soil Science Society of America Journal; Madison, 79(1), 20–29. DOI: https://doi.org/10.2136/sssaj2014.06.0250

Papanikolaou, C., & Sakellariou-Makrantonaki, M. (2013). The effect of an intelligent surface drip irrigation method on sorghum biomass, energy and water savings. Irrigation Science, 31(4), 807–814. https://doi.org/10.1007/s00271-012-0344-2 DOI: https://doi.org/10.1007/s00271-012-0344-2

Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista, P., Bacci, L., Rapi, B., Marzialetti, P., Hemming, J., & Balendonck, J. (2009). Root zone sensors for irrigation management in intensive agriculture. Sensors, 9(4), 2809–2835. https://doi.org/10.3390/s90402809 DOI: https://doi.org/10.3390/s90402809

Parvin, N., & Degre, A. (2016). Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Research, 54. https://doi.org/10.1071/SR15036 DOI: https://doi.org/10.1071/SR15036

Petropoulos, G. P., Ireland, G., & Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 36–56. https://doi.org/10.1016/j.pce.2015.02.009 DOI: https://doi.org/10.1016/j.pce.2015.02.009

Provenzano, G., Rallo, G., & Ghazouani, H. (2015). Assessing field and laboratory calibration protocols for the Diviner 2000 probe in a range of soils with different textures. Journal of Irrigation and Drainage Engineering, 142, 04015040. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000950 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000950

Raine, S. R., Meyer, W. S., Rassam, D. W., Hutson, J. L., & Cook, F. J. (2007). Soil–water and solute movement under precision irrigation: Knowledge gaps for managing sustainable root zones. Irrigation Science, 26(1), 91–100. https://doi.org/10.1007/s00271-007-0075-y DOI: https://doi.org/10.1007/s00271-007-0075-y

Roberti, J. A., Ayres, E., Loescher, H. W., Tang, J., Starr, G., Durden, D. J., … Zulueta, R. C. (2018). A robust calibration method for continental-scale soil water content measurements. Vadose Zone Journal, 17(1), UNSP 170177. https://doi.org/10.2136/vzj2017.10.0177 DOI: https://doi.org/10.2136/vzj2017.10.0177

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., … Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358. https://doi.org/10.2136/vzj2007.0143 DOI: https://doi.org/10.2136/vzj2007.0143

Rowlandson, T. L., Berg, A. A., Bullock, P. R., Ojo, E. R., McNairn, H., Wiseman, G., & Cosh, M. H. (2013). Evaluation of several calibration procedures for a portable soil moisture sensor. Journal of Hydrology, 498, 335–344. https://doi.org/10.1016/j.jhydrol.2013.05.021 DOI: https://doi.org/10.1016/j.jhydrol.2013.05.021

Sevostianova, E., Deb, S., Serena, M., VanLeeuwen, D., & Leinauer, B. (2015). Accuracy of two electromagnetic soil water content sensors in saline soils. Soil Science Society of America Journal, 79(6), 1752. https://doi.org/10.2136/sssaj2015.07.0271 DOI: https://doi.org/10.2136/sssaj2015.07.0271

Seyfried, M. S., Grant, L. E., Du, E., & Humes, K. (2005). Dielectric loss and calibration of the hydra probe soil water sensor. Vadose Zone Journal, 4(4), 1070–1079. https://doi.org/10.2136/vzj2004.0148 DOI: https://doi.org/10.2136/vzj2004.0148

Shamir, O., Goldshleger, N., Basson, U., & Reshef, M. (2018). Laboratory Measurements of Subsurface Spatial Moisture Content by Ground-Penetrating Radar (GPR) Diffraction and Reflection Imaging of Agricultural Soils. Remote Sensing, 10(10), 1667. https://doi.org/10.3390/rs10101667 DOI: https://doi.org/10.3390/rs10101667

Sharma, H., Shukla, M. K., Bosland, P. W., & Steiner, R. (2017). Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agricultural Water Management, 179, 81–91. https://doi.org/10.1016/j.agwat.2016.07.001 DOI: https://doi.org/10.1016/j.agwat.2016.07.001

Sheets, K. R., & Hendrickx, J. M. H. (1995). Noninvasive soil water content measurement using electromagnetic induction. Water Resources Research, 31(10), 2401–2409. https://doi.org/10.1029/95WR01949 DOI: https://doi.org/10.1029/95WR01949

Soulis, K. X., Elmaloglou, S., & Dercas, N. (2015). Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agricultural Water Management, 148, 258–268. https://doi.org/10.1016/j.agwat.2014.10.015 DOI: https://doi.org/10.1016/j.agwat.2014.10.015

Souza, C. F., Conchesqui, M. E. S., & da Silva, M. B. (2019). Semiautomatic irrigation management in tomato. Engenharia Agricola, 39, 118–125. https://doi.org/10.1590/1809-4430-Eng.Agric.v39nep118-125/2019 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v39nep118-125/2019

Spelman, D., Kinzli, K.-D., & Kunberger, T. (2013). Calibration of the 10HS soil moisture sensor for southwest Florida agricultural soils. Journal of Irrigation & Drainage Engineering, 139(12), 965–971. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647

Spittlehouse, D. L. (2000). Using time domain reflectometry in stony forest soil. Canadian Journal of Soil Science, 80(1), 3–11. https://doi.org/10.4141/S99-004 DOI: https://doi.org/10.4141/S99-004

Starr, J. L., Paltineanu, I. C. (1998). Real-time soil water dynamics over large areas using multisensor capacitance probes and monitoring system. Soil & Tillage Research, 47: 43-49 DOI: https://doi.org/10.1016/S0167-1987(98)00071-3

Starr, J. L., Paltineanu, I. C. (2002). Capacitance devices. V: Dane J.H., Topp G.C. (ed.) Methods of soil analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series

Teixeira, W. G., Schroth, G., Marques, J. D., & Huwe, B. (2003). Sampling and TDR probe insertion in the determination of the volumetric soil water content. Revista Brasileira de Ciência Do Solo, 27(4), 575–582. https://doi.org/10.1590/S0100-06832003000400001 DOI: https://doi.org/10.1590/S0100-06832003000400001

Thessler, S., Kooistra, L., Teye, F., Huitu, H., & Bregt, A. K. (2011). Geosensors to support crop production: current applications and user requirements. Sensors, 11(7), 6656–6684. https://doi.org/10.3390/s110706656 DOI: https://doi.org/10.3390/s110706656

Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582. https://doi.org/10.1029/WR016i003p00574 DOI: https://doi.org/10.1029/WR016i003p00574

Topp, G. C., Ferré, P. A. (2002). General information. Scope of methods and brief description. V: Dane, J. H., Topp, G. C. (ed.) Methods of Soil Analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series

Topp, G., & Reynolds, W. D. (1998). Time domain reflectometry: A seminal technique for measuring mass and energy in soil. Soil and Tillage Research, 47(1), 125–132. https://doi.org/10.1016/S0167-1987(98)00083-X DOI: https://doi.org/10.1016/S0167-1987(98)00083-X

Varble, J. L., & Chávez, J. L. (2011). Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado. Agricultural Water Management, 101(1), 93–106. https://doi.org/10.1016/j.agwat.2011.09.007 DOI: https://doi.org/10.1016/j.agwat.2011.09.007

Vaz, C., Jones, S., Meding, S., & Tuller, M. (2013). Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone Journal, 12. https://doi.org/10.2136/vzj2012.0160 DOI: https://doi.org/10.2136/vzj2012.0160

Vellidis, G., Tucker, M., Perry, C., Kvien, C., & Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 61(1), 44–50. https://doi.org/10.1016/j.compag.2007.05.009 DOI: https://doi.org/10.1016/j.compag.2007.05.009

Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., … Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516, 76–96. https://doi.org/10.1016/j.jhydrol.2013.11.061 DOI: https://doi.org/10.1016/j.jhydrol.2013.11.061

Visconti, F., de Paz, J. M., Martínez, D., & Molina, M. J. (2014). Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agricultural Water Management, 132, 111–119. https://doi.org/10.1016/j.agwat.2013.10.005 DOI: https://doi.org/10.1016/j.agwat.2013.10.005

Waite, A., & Schmidt, S. (1962). Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Proceedings of the IRE, 50(6), 1515–1520. https://doi.org/10.1109/JRPROC.1962.288195 DOI: https://doi.org/10.1109/JRPROC.1962.288195

Walthert, L., & Schleppi, P. (2018). Equations to compensate for the temperature effect on readings from dielectric Decagon MPS-2 and MPS-6 water potential sensors in soils. Journal of Plant Nutrition and Soil Science, 181(5), 749–759. https://doi.org/10.1002/jpln.201700620 DOI: https://doi.org/10.1002/jpln.201700620

Weitz, A. M., Grauel, W. T., Keller, M., & Veldkamp, E. (1997). Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resources Research, 33(6), 1241–1249. https://doi.org/10.1029/96WR03956 DOI: https://doi.org/10.1029/96WR03956

Zettl, J. D., Huang, M., Barbour, S. L., & Si, B. C. (2015). Density-dependent calibration of multisensor capacitance probes in coarse soil. Canadian Journal of Soil Science, 95(4), 331–336. https://doi.org/10.4141/CJSS-2015-021 DOI: https://doi.org/10.4141/cjss-2015-021

Zotarelli, L., Dukes, M. D., Scholberg, J. M. S., Femminella, K., & Muñoz-Carpena, R. (2011). Irrigation scheduling for green bell peppers using capacitance soil moisture sensors. Journal of Irrigation & Drainage Engineering, 137(2), 73–81. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000281 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000281

Zupanc, V., & Pintar, M. (2007). Metode za merjenje količine vode v tleh 1. Del: Tenziometer. Acta agriculturae Slovenica, 89(1), 279-287

Zupanc, V., Pintar, M., Korpar, P., Železnik Bračič, B., Urbanc, J., Šturm, M., Lojen, S., Knapič, M. (2009). Use of stable isotopes in Soil - Water - Plant studies. IAEA Technical Meeting on innovative methods for maintenance and guidelines for modernization of nuclear instruments applied in the fields of food and agriculture and environmental quality management. May 25-29, 2009. IAEA, Vienna

Published

14. 07. 2021

Issue

Section

Review Article

How to Cite

PEČAN, U., ZUPANC, V., & PINTAR, M. (2021). Methods for measuring soil water content. Acta Agriculturae Slovenica, 117(2), 1–13. https://doi.org/10.14720/aas.2021.117.2.1618

Most read articles by the same author(s)

1 2 3 > >>