Pesticide residues in bee pollen - validation of the gas chromatography-mass spectrometry multiresidual method and a survey of bee pollens from Slovenia
DOI:
https://doi.org/10.14720/aas.2021.117.2.1822Keywords:
bee pollen, GC-MS, pesticide residues, multiresidual methodAbstract
A new analytical method for determining environmental pesticide residues in pollen was introduced and validated. The extraction was conducted using acetonitrile, the clean-up using Supelclean Ultra 2400 solid phase extraction cartridges, which contain Grapsphere, anion exchanger, C18 and zirconia-based sorbent, and the determination was conducted using gas chromatography coupled with mass spectrometry. The method was applied in practice. A total of 49 active substances (pesticides) were sought in 30 bee pollen samples gathered from Slovenian beekeepers from all 12 statistical regions of Slovenia. The fungicide azoxystrobin was the only active substance found and was found only in one sample with a concentration of < 0.05 mg kg-1. The active substances sought were not detected in 96.7 % of the samples analysed. The risk assessment revealed that the analysed pollen samples do not represent an unacceptable risk for consumers. The results were compared with those from the literature and the outcome was that bee pollen from Slovenia contained a lower number of active substances at mainly lower contents as compared pollen from some other European countries.References
Alder L., Hill A., Holland P.T., Lantos J., Lee S.M., MacNeil J.D., O'Rangers J., van Zoonen P., Ambrus A. (2000). Guidelines for single-laboratory validation of analytical methods for trace-level concentrations of organic chemicals, Principles and practices of method validation (ed.: A. Fajgelj, A. Ambrus). The Royal Society of Chemistry, pp. 179 – 252. DOI: https://doi.org/10.1039/9781847551757-00179
Anastassiades M., Lehotay S. J., Štajnbaher D., Schenck F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and »dispersive solid-phase extraction« for the determination of pesticide residues in produce. Journal of AOAC
International, 86, 412-431. https://doi.org/10.1093/jaoac/86.2.412 DOI: https://doi.org/10.1093/jaoac/86.2.412
Cabrera de Oliveira R. C., Queiroz S. C. do N., da Luz C. F. P., Porto R. S., Rath S. (2016). Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere, 163,525-534. https://doi.org/10.1016/j.chemosphere.2016.08.022 DOI: https://doi.org/10.1016/j.chemosphere.2016.08.022
Calatayud-Vernich P., Calatayud F., Simó E., Picó Y. (2018). Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 241, 106-114. https://doi.org/10.1016/j.envpol.2018.05.062 DOI: https://doi.org/10.1016/j.envpol.2018.05.062
Crenna E., Jolliet O., Collina E., Sala S., Fantke P. (2020). Characterizing honey bee exposure and effects from pesticides for chemical prioritization and life cycle assessment. Environment International, 138, 105642. https://doi.org/10.1016/j.envint.2020.105642 DOI: https://doi.org/10.1016/j.envint.2020.105642
David A., Botías C., Abdul-sada A., Nicholls E., Rotheray E. L., Hill E. M., Goulson D. (2016). Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environment International, 88, 169-178. https://doi.org/10.1016/j.envint.2015.12.011 DOI: https://doi.org/10.1016/j.envint.2015.12.011
Eckert J.E. (1933). The flight range of the honeybee. Journal of Agricultural Research, 47, 257-285.
García-Valcárcel A. I., Martínez-Ferrer M. T., Campos-Rivela J. M., Guil M. D. H. (2019). Analysis of pesticide residues in honeybee Ž(Apis mellifera L.) and in corbicular pollen. Exposure in citrus orchard with an integrated pest management system. Talanta, 204, 153-162. https://doi.org/10.1016/j.talanta.2019.05.106 DOI: https://doi.org/10.1016/j.talanta.2019.05.106
Hakme E., Lozano A., Gómez-Ramos M. M., Hernando M. D., Fernández-Alba A. R. (2017). Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. Chemosphere, 184, 1310-1319. https://doi.org/10.1016/j.chemosphere.2017.06.089. DOI: https://doi.org/10.1016/j.chemosphere.2017.06.089
ISO 5725. (1994). Accuracy (trueness and precision) of measurement methods and results - Part2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, pp. 1-42.
Kasiotis K. M., Anagnostopoulos C., Anastasiadou P., Machera K. (2014). Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sciience of the Total Environment, 485-486, 633-642. https://doi.org/10.1016/j.scitotenv.2014.03.042 DOI: https://doi.org/10.1016/j.scitotenv.2014.03.042
Lehotay S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90, 485-520. https://doi.org/10.1093/jaoac/90.2.485 DOI: https://doi.org/10.1093/jaoac/90.2.1SUP
Li Q.-Q., Wang K., Marcucci M. C., Sawaya A. C. H. F., Hu L., Xue X.-F., Wu L.-M. (2018). Nutrient-rich bee pollen: A treasure trove of active natural metabolites. Journal of Functional Foods, 49, 472-484. https://doi.org/10.1016/j.jff.2018.09.008 DOI: https://doi.org/10.1016/j.jff.2018.09.008
Li Y., Kelley R. A., Anderson T. D., Lydy M. J. (2015). Development and comparison of two multi-residue methods for the analysis of select pesticides in honey bees, pollen, and wax by gas chromatography-quadropole mass spectrometry. Talanta, 140, 81-87. https://doi.org/10.1016/j.talanta.2015.03.031 DOI: https://doi.org/10.1016/j.talanta.2015.03.031
Lozano A., Rajski Ł., Uclés S., Belmonte-Valles N., Mezcua M., Fernández-Alba A. R. (2014). Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Talanta, 118, 68-83. https://doi.org/10.1016/j.talanta.2013.09.053 DOI: https://doi.org/10.1016/j.talanta.2013.09.053
Mullin C. A., Frazier M., Frazier J. L., Ashcraft S., Simonds R., vanEngelsdorp D., Pettis J. S. (2010). High levels of miticides and agrochemicals in North American Apiaries: implications for honey bee health. PLOS one, 5, e9754. https://doi.org/10.1371/journal.pone.0009754 DOI: https://doi.org/10.1371/journal.pone.0009754
Nakajima Y., Tsuruma K., Shimazawa M., Mishima S., Hara H. (2009). Comparison of bee products based on assays of antioxidant capacities. BioMed Central, 9, 4. https://doi.org/10.1186/1472-6882-9-4 DOI: https://doi.org/10.1186/1472-6882-9-4
Raimets R., Bontšutšnaja A., Bartkevics V., Pugajeva I., Kaart T., Puusepp L., Pihlik P., Keres I., Viinalass H., Mänd M., Karise R. (2020). Pesticide residues in beehive matrices are dependent on collection time and matrix type but independent of proportion of foraged oilseed rape and agricultural land in foraging territory. Chemosphere, 238, 124555. https://doi.org/10.1016/j.chemosphere.2019.124555 DOI: https://doi.org/10.1016/j.chemosphere.2019.124555
Salles J., Cardinault N., Patrae V., Berry A., Giraudet C., Collin M.-L., Chanet A., Tagliaferri C., Denis P., Pouyet C., Boirie Y., Walrand S. (2014). Bee pollen improves muscle protein and energy metabolism in malnourished old rats through interfering with the Mtor signaling pathway and mitochondrial activity. Nutrients, 6, 5500-5516. https://doi.org/10.3390/nu6125500 DOI: https://doi.org/10.3390/nu6125500
SANTE/11813/2017. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. DG SANTE, European Comission, 2017.
Stenerson K. K, (2018). Analysis of pesticides in turmeric powder by LC-MS/MS and GC-MS/MS after cleanup with a novel dual-layer SPE cartridge. Supelco Analytical Products, Analytix reporter, 1, 2018.
Thakur M., Nanda V. (2020). Composition and functionality of bee pollen: A review. Trends in Food Science & Technology, 98, 82-106. https://doi.org/10.1016/j.tifs.2020.02.001 DOI: https://doi.org/10.1016/j.tifs.2020.02.001
Tosi S., Costa C., Vesco U., Quaglia G., Guido G. (2018). A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the Total Environment, 615, 208-218. https://doi.org/10.1016/j.scitotenv.2017.09.226 DOI: https://doi.org/10.1016/j.scitotenv.2017.09.226
Vázquez P. P., Lozano A., Uclés S., Ramos M. M. G., Fernández-Alba A. R. (2015). A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1426, 161-173. https://doi.org/10.1016/j.chroma.2015.11.081 DOI: https://doi.org/10.1016/j.chroma.2015.11.081
Wang P.-C., Lee R.-J., Chen C.-Y., Chou C.-C., Lee M.-R. (2012). Determination of cyromazine and melamine in chiken eggs using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 752, 78-86. https://doi.org/10.1016/j.aca.2012.09.029 DOI: https://doi.org/10.1016/j.aca.2012.09.029
Wiest L., Buleté A., Giroud B., Fratta C., Amic S., Lambert O., Pouliquen H., Arnaudguilhem C. (2011). Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extractuion procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A, 1218, 5743-5756. https://doi.org/10.1016/j.chroma.2011.06.079 DOI: https://doi.org/10.1016/j.chroma.2011.06.079
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Helena Baša Česnik

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.