The role of exogenous glycinebetaine on some antioxidant activity of non-T and T tobacco (Nicotiana tabacum L.) under in vitro salt stress

Authors

  • Marzeih VAHID DASTJERDI University of Isfahan, Iran
  • Ali Akbar EHSANPOUR University of Isfahan, Iran
  • Amir Hossein FORGHANI Department of Biology, Payame Noor University, Tehran, Iran

DOI:

https://doi.org/10.14720/aas.2021.117.3.1056

Keywords:

glycine betaine, proline, antioxidant enzyme, tobacco plants, salt tolerance

Abstract

Glycine betaine is an osmoprotectant compound which enhances cell tolerance in plant species in response to environmental stresses. This study aimed to investigate the effect of exogenous application of glycine betaine on some antioxidant activities of tobacco plants overexpressing P5CS gene. Sterile tobacco seedlings with four to six leaves were transferred to MS medium containing 0, 100, and 200 mM NaCl, after which glycine betaine (20 and 40 mg l-1) were foliar sprayed on the surface of the plants. After four weeks, glycine betaine treatment enhanced the antioxidant capacity of the plant through activation of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). In contrast, H2O2 content and MDA level were reduced by glycine betaine under similar conditions. Therefore, application of exogenous glycine betaine under salt stress improved stress tolerance in T and non-T plants. Meanwhile, our results indicated the positive effect of glycine betaine in T plants was greater than in non-T plants. On the other hand, this result suggested that the synergistic effects of glycine betaine and proline in plants enhanced the antioxidant defense system in T plants overexpressing P5CS gene.

References

Abogadallah, G. M. (2010). Antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. https://doi.org/10.4161/psb.5.4.10873

Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Al Hassan, M., Fuertes, M. M., Sánchez, F. J. R., Vicente, O., & Boscaiu, M. (2015). Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 1-11. https://doi.org/10.15835/nbha4319793

Ashraf, M., & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Islam, M. M., Uraji, M., Matsuoka, K., . . . Murata, Y. (2010). Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Bioscience, Biotechnology, and Biochemistry, 74(10), 2043-2049. https://doi.org/10.1271/bbb.100334

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8

Bellinger, Y. (1987). Proline accumulation in higher plants: a redox buffer? Plant Physiology(Life Sci. Adv.), 6, 23-27.

Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., & Ben Abdullah, F. (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry, 58(7), 4216-4222. https://doi.org/10.1021/jf9041479

Bowler, C., Montagu, M. v., & Inze, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Biology, 43(1), 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. https://doi.org/10.1093/jxb/erm284

Dawood, M. G. (2016). Influence of osmoregulators on plant tolerance to water stress. Sci Agric, 13(1), 42-58. https://doi.org/10.15192/PSCP.SA.2016.13.1.4258

Díaz, P., Borsani, O., Márquez, A., & Monza, J. (2005). Osmotically induced proline accumulation in Lotus corniculatus leaves is affected by light and nitrogen source. Plant Growth Regulation, 46(3), 223-232. https://doi.org/10.1007/s10725-005-0860-7

El-Samad, H. A., Shaddad, M., & Barakat, N. (2011). Improvement of plants salt tolerance by exogenous application of amino acids. Journal of Medicinal Plants Research, 5(24), 5692-5699.

Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., Ullah, N. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75(2), 391-404. https://doi.org/10.1007/s10725-014-0013-y

Figueroa-Soto, C. G., & Valenzuela-Soto, E. M. (2018). Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie, 147, 89-97. https://doi.org/10.1016/j.biochi.2018.01.002

Forghani, A. H., Almodares, A., & Ehsanpour, A. A. (2018). Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Applied Biological Chemistry, 61(1), 113-124. https://doi.org/10.1007/s13765-017-0329-1

Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355-364. https://doi.org/10.1034/j.1399-3054.2003.00223.x

Fridovich, I. (1983). Superoxide radical: an endogenous toxicant. Annual Review of Pharmacology and Toxicology, 23(1), 239-257. https://doi.org/10.1146/annurev.pa.23.040183.001323

Garg, N., & Manchanda, G. (2009). ROS generation in plants: boon or bane? Plant Biosystems, 143(1), 81-96.

https://doi.org/10.1080/11263500802633626

Gossett, D. R., Banks, S. W., Millhollon, E. P., & Lucas, M. C. (1996). Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiology, 112(2), 803-809. https://doi.org/10.1104/pp.112.2.803

Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International, 2014. https://doi.org/10.1155/2014/757219

Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2011). Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports, 5(4), 353. https://doi.org/10.1007/s11816-011-0189-9

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1

Iqbal, N., Umar, S., Khan, N. A., & Khan, M. I. R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany, 100, 34-42. https://doi.org/10.1016/j.envexpbot.2013.12.006

Kishor, P. K., Hong, Z., Miao, G.-H., Hu, C.-A. A., & Verma, D. P. S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108(4), 1387-1394. https://doi.org/10.1104/pp.108.4.1387

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28(1), 131-140.

Nawaz, K., & Ashraf, M. (2007). Improvement in salt tolerance of maize by exogenous application of glycinebetaine: growth and water relations. Pakistan Journal of Botany, 39(5), 1647-1653.

Neto, C. O., Lobato, A., Costa, R., Maia, W., Filho, B. S., Alves, G., . . . Cruz, F. (2009). Nitrogen compounds and enzyme activities in sorghum induced to water deficit during three stages. Plant Soil Environ, 55, 238-244. https://doi.org/10.17221/84/2009-PSE

Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6), 596-604. https://doi.org/10.1016/j.jplph.2012.01.004

Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010

Park, E. J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., & Chen, T. H. (2004). Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. The Plant Journal, 40(4), 474-487. https://doi.org/10.1111/j.1365-313X.2004.02237.x

Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115, 126-140. https://doi.org/10.1016/j.plaphy.2017.03.018

Rajaeian, S., & Ehsanpour, A. (2015). Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress. Russian Journal of Plant Physiology, 62(2), 246-252. https://doi.org/10.1134/S1021443715020156

Raza, S. H., Athar, H. R., Ashraf, M., & Hameed, A. (2007). Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany, 60(3), 368-376. https://doi.org/10.1016/j.envexpbot.2006.12.009

Razavizadeh, R., & Ehsanpour, A. (2009). Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants. Biological Letters, 46(2), 63-75. https://doi.org/10.2478/v10120-009-0002-4

Seckin, B., Sekmen, A. H., & Türkan, I. (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth Regulation, 28(1), 12. https://doi.org/10.1007/s00344-008-9068-1

Szabados, L., & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

Takabe, T., Rai, V., & Hibino, T. (2006). Metabolic engineering of glycinebetaine Abiotic stress tolerance in plants (pp. 137-151): Springer. https://doi.org/10.1007/1-4020-4389-9_9

Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1

Wang, G., Zhang, X., Li, F., Luo, Y., & Wang, W. (2010). Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica, 48(1), 117-126. https://doi.org/10.1007/s11099-010-0016-5

Yamada, N., Promden, W., Yamane, K., Tamagake, H., Hibino, T., Tanaka, Y., & Takabe, T. (2009). Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet–importance of long-distance translocation of betaine under normal and salt-stressed conditions. Journal of Plant Physiology, 166(18), 2058-2070. https://doi.org/10.1016/j.jplph.2009.06.016

Downloads

Published

10. 11. 2021

Issue

Section

Original Scientific Article

How to Cite

VAHID DASTJERDI, M., EHSANPOUR, A. A., & FORGHANI, A. H. (2021). The role of exogenous glycinebetaine on some antioxidant activity of non-T and T tobacco (Nicotiana tabacum L.) under in vitro salt stress. Acta Agriculturae Slovenica, 117(3), 1–9. https://doi.org/10.14720/aas.2021.117.3.1056

Similar Articles

1-10 of 468

You may also start an advanced similarity search for this article.