Marker-trait association study for root-related traits in chickpea (Cicer arietinum L.)

Authors

  • Zahra SHEKARI
  • Zahra TAHMASEBI
  • Homayoun KANOUNI Research Associate, Field and Horticultural Crops Reseach Unit, Agricultural and Natural Resources Research and Education Center of Kurdistan, Agricultural Research, Education and Extension Organization, Iran.
  • Ali ashraf MEHRABI

DOI:

https://doi.org/10.14720/aas.2021.117.3.2167

Keywords:

linkage groups, drought tolerance, population structure, SSR markers, subpopulations, variationlations, variation

Abstract

Root structure modification can improve important agronomic traits including yield, drought tolerance and nutrient deficiency resistance. The aim of the present study was to investigate the diversity of root traits and to find simple sequence repeat (SSR) markers linked to root traits in chickpea (Cicer arietinum L.). This research was performed using 39 diverse accessions of chickpea. The results showed that there is significant variation in root traits among chickpea genotypes. A total of 26 alleles were detected 26 polymorphic bands were produced by 10 SSR markers in the eight linkage groups (LG). The results indicated that there is substantial variability present in chickpea germplasm for root traits. By analyzing the population structure, four subpopulations were identified. PsAS2, AF016458, 16549 and 19075 SSR markers on LG1, LG3, LG2 and LG1 linkage group respectively were associated with root traits. The research findings provide valuable information for improving root traits for chickpea breeders.

Author Biographies

  • Zahra SHEKARI
    Agricultural College, University of Ilam, Ilam, Iran
  • Zahra TAHMASEBI
    Agricultural College, University of Ilam, Ilam, Iran
  • Ali ashraf MEHRABI
    Agricultural College, University of Ilam, Ilam, Iran

References

Ahmad, F., Gaur, P., & Croser, J. (2005). Chickpea (Cicer arietinum L.). In ‘Genetic resources, chromosome engineering and crop improvement–grain legumes’.(Eds R Singh, P Jauhar) pp. 185–214. https://doi.org/10.1201/9780203489284.ch7

Akhavan, S., Shabanpour, M., & Esfahani, M. (2012). Soil compaction and texture effects on the growth of roots and shoots of wheat. Journal of Water and Soil, 26(3), 727–735. doi: 10.22067/JSW.V0I0.14941.

Beebe, S. E., Rojas‐Pierce, M., Yan, X., Blair, M. W., Pedraza, F., Munoz, F., .. & Lynch, J. P. (2006). Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Science, 46(1), 413-423.

https://doi.org/10.2135/cropsci2005.0226

Benjamin, J. G., & Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97(2-3), 248-253. https://doi.org/10.1016/j.fcr.2005.10.005

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633 2635. https://doi.org/10.1093/bioinformatics/btm308

Breseghello, F., & Sorrells, M. E. (2006). Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 172(2), 1165-1177. https://doi.org/10.1534/genetics.105.044586

Buckler IV, E. S., & Thornsberry, J. M. (2002). Plant molecular diversity and applications to genomics. Current Opinion in Plant Biology, 5(2), 107-111. https://doi.org/10.1016/S1369-5266(02)00238-8

Chandra, S., Buhariwalla, H.K., Kashiwagi, J., Harikrishna, S., Rupa Sridevi, K., Chandra, S., Buhariwalla, H. K., Kashiwagi, J., & Harikrishna, S. (2004). Identifying QTL-linked markers in marker-deficient crops. In 4th International Crop Science Congress. Markers, 2(38.1), 235.

Chen, Y., Ghanem, M. E., & Siddique, K. H. (2017). Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8), 1987-1999. https://doi.org/10.1093/jxb/erw368

de Dorlodot, S., Forster, B., Pagès, L., Price, A., Tuberosa, R., & Draye, X. (2007). Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12(10), 474-481. https://doi.org/10.1016/j.tplants.2007.08.012

Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue (No. RESEARCH).

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620. Gaur, P.M., Krishnamurthy, L. and Kashiwagi, J. 2008. Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)-current status of research at ICRISAT. Plant Production Science, 11(1), 3-11. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Fukai, S., & Hammer, G. L. (1995). Growth and yield response of barley and chickpea to water stress under three environments in southeast Queensland. II. Root growth and soil water extraction pattern. Australian Journal of Agricultural Research, 46(1), 35-48. https://doi.org/10.1071/AR9950035.

Gaur PM, Krishnamurthy L, Kashiwagi J. (2008). Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)—current status of research at ICRISAT. Plant Production Science, 11(1), 3-11. https://doi.org/10.1626/pps.11.3

Ghaffari, P., Talebi, R., & Keshavarzi, F. (2014). Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiology and Molecular Biology of Plants, 20(2), 225-233. https://doi.org/10.1007/s12298-014-0223-9

Ghanem, M. E., Hichri, I., Smigocki, A. C., Albacete, A., Fauconnier, M. L., Diatloff, E., .. & Pérez-Alfocea, F. (2011). Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Reports, 30(5), 807-823. https://doi.org/10.1007/s00299-011-1005-2

Hajabbasi, M. A. (2001). Tillage effects on soil compactness and wheat root morphology. Journal of Agricultural Science and Technology, 3(1), 67-77.

Hajibarat, Z., Saidi, A., Hajibarat, Z., & Talebi, R. (2015). Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiology and Molecular Biology of Plants, 21(3), 365-373. https://doi.org/10.1007/s12298-015-0306-2

Hamwieh, A., Imtiaz, M., & Malhotra, R. S. (2013). Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arientinum L.). Theoretical and Applied Genetics, 126(4), 1025-1038. https://doi.org/10.1007/s00122-012-2034-0

Hasanabadi, T., Ardakani, M. R., Rejali, F., Paknejad, F., Eftekhari, S. A., & Zargari, K. (2010). Response of barley root characters to co-inoculation with Azospirillum lipoferum and Pseudomonas flouresence under different levels of nitrogen. American-Eurasian Journal of Agricultural and Environmental Science, 9(2), 156-162. ISSN : 1818-6769

Jaganathan, D., Thudi, M., Kale, S., Azam, S., Roorkiwal, M. & Gaur, P.M., et al. (2015). Genotyping-by-sequencing based intra-specific genetic map refines a “QTL hotspot” region for drought tolerance in chickpea. Molecular Genetics and Genomics, 290(2), 559-71. https://doi.org/10.1007/s00438-014-0932-3

Jain, D., & Chattopadhyay, D. (2010). Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biology, 10(1), 1-14. https://doi.org/10.1186/1471-2229-10-24

Jha, U. C., Jha, R., Bohra, A., Parida, S. K., Kole, P. C., Thakro, V., .. & Singh, N. P. (2018). Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech, 8(1), 43. https://doi.org/10.1007/s13205-017-1057-2

Kale, S.M., Jaganathan, D., Ruperao, P., Chen, C., Punna, R., Kudapa, H., (2015). Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Scientific Reports, 5(1),15296. https://doi.org/10.1038/srep15296

Kashiwagi, J., Krishnamurthy, L., Crouch, J. H., & Serraj, R. (2006). Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research, 95(2-3), 171-181. https://doi.org/10.1016/j.fcr.2005.02.012

Kashiwagi, J., Krishnamurthy, L., Gaur, P. M., Chandra, S., & Upadhyaya, H. D. (2008). Estimation of gene effects of the drought avoidance root characteristics in chickpea (C. arietinum L.). Field Crops Research, 105(1-2), 64-69. https://doi.org/10.1016/j.fcr.2007.07.007

Keneni, G., Bekele, E., Imtiaz, M., Dagne, K., Getu, E., & Assefa, F. (2012). Genetic diversity and population structure of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Molecular Biology Reporter, 30(3), 654-665. https://doi.org/10.1007/s11105-011-0374-6

Kirkegaard, J. A., Lilley, J. M., Howe, G. N., & Graham, J. M. (2007). Impact of subsoil water use on wheat yield. Australian Journal of Agricultural Research, 58(4), 303-315. https://doi.org/10.1071/AR06285

Li, Y., Ruperao, P., Batley, J., Edwards, D., Khan, T., Colmer, T. D., .. & Sutton, T. (2018). Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Frontiers in Plant Science, 9, 190. https://doi.org/10.3389/fpls.2018.00190

Lovelli, S., Perniola, M., Di Tommaso, T., Bochicchio, R., & Amato, M. (2012). Specific root length and diameter of hydroponically-grown tomato plants under salinity. Journal of Agronomy, 11(4), 11. https://doi.org/10.3923/ja.2012.101.106

Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107-153. https://doi.org/10.1016/S0065-2113(08)60477-0

Mahanta, D., Rai, R. K., Mishra, S. D., Raja, A., Purakayastha, T. J., & Varghese, E. (2014). Influence of phosphorus and biofertilizers on soybean and wheat root growth and properties. Field Crops Research, 166, 1-9. https://doi.org/10.1016/j.fcr.2014.06.016

Malamy, J.E., 2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell & Environment, 28(1), 67-77. https://doi.org/10.1111/j.1365-3040.2005.01306.x

Maphosa, L., Richards, M. F., Norton, S. L., & Nguyen, G. N. (2020). Breeding for abiotic stress adaptation in chickpea (Cicer arietinum L.): A comprehensive review. Crop Breeding, Genetics and Genomics, 4(3). https://doi.org/10.20900/cbgg20200015

Mugabe, D., Coyne, C. J., Piaskowski, J., Zheng, P., Ma, Y., Landry, E., ... & Abbo, S. (2019). Quantitative trait loci for cold tolerance in chickpea. Crop Science, 59(2), 573-582. https://doi.org/10.2135/cropsci2018.08.0504

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323. https://doi.org/10.1073/pnas.70.12.3321

Passioura, J. (2006). Increasing crop productivity when water is scarce—from breeding to field management. Agricultural Water Management, 80(1-3), 176-196. https://doi.org/10.1016/j.agwat.2005.07.012

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945

Ramamoorthy, P., Lakshmanan, K., Upadhyaya, H. D., Vadez, V., & Varshney, R. K. (2017). Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field crops research, 201, 146-161. https://doi.org/10.1016/j.fcr.2016.11.004

Rohlf, F.J. (2000). NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. New York: Exeter Software. https://doi.org/10.1016/j.fcr.2016.11.004

Sachdeva, S., Bharadwaj, C., Singh, R. K., Jain, P. K., Patil, B. S., Roorkiwal, M., & Varshney, R. (2020). Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.). PloS One, 15(7), e0234550. https://doi.org/10.1371/journal.pone.0234550

Schenk, M. K., & Barber, S. A. (1979). Root characteristics of corn genotypes as related to p uptake 1. Agronomy Journal, 71(6), 921-924. https://doi.org/10.2134/agronj1979.00021962007100060006x

Sefera, T., Abebie, B., Gaur, P. M., Assefa, K., & Varshney, R. K. (2011). Characterisation and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop and Pasture Science, 62(2), 177-187. https://doi.org/10.1071/CP10165

Thudi, M., Gaur, P. M., Krishnamurthy, L., Mir, R. R., Kudapa, H., Fikre, A., .. & Varshney, R. K. (2014a). Genomics-assisted breeding for drought tolerance in chickpea. Functional Plant Biology, 41(11), 1178-1190. https://doi.org/10.1071/FP13318

Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy, L., Roorkiwal, M., .. & Varshney, R. K. (2014b). Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. Plos One, 9(5), e96758. https://doi.org/10.1371/journal.pone.0096758

Tuberosa, R., & Salvi, S. (2006). Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11(8), 405-412. https://doi.org/10.1016/j.tplants.2006.06.003

Tuberosa, R., Salvi, S., Sanguineti, M. C., Landi, P., Maccaferri, M., & Conti, S. (2002). Mapping QTLs regulating morpho‐physiological traits and yield: Case studies, shortcomings and perspectives in drought‐stressed maize. Annals of Botany, 89(7), 941-963. https://doi.org/10.1093/aob/mcf134

Upadhyaya, H. D., Dwivedi, S. L., Baum, M., Varshney, R. K., Udupa, S. M., Gowda, C. L., .. & Singh, S. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biology, 8(1), 1-12. https://doi.org/10.1186/1471-2229-8-106

Varshney, R. K., Gaur, P. M., Chamarthi, S. K., Krishnamurthy, L., Tripathi, S., Kashiwagi, J., .. & Jaganathan, D. (2013). Fast‐track introgression of “QTL‐hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. The Plant Genome, 6(3). https://doi.org/10.3835/plantgenome2013.07.0022

Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., .. & Viswanatha, K. P. (2014). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 127(2), 445-462. https://doi.org/10.1007/s00122-013-2230-6

Wasson, A. P., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., Richards, R. A., & Watt, M. (2014). Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. Journal of Experimental Botany, 65(21), 6231-6249. https://doi.org/10.1093/jxb/eru250

Yang, T., Fang, L., Zhang, X., Hu, J., Bao, S., Hao, J., .. & Zong, X. (2015). High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One, 10(10), e0139775. https://doi.org/10.1371/journal.pone.0139775

Yusuf Ali, M., Johansen, C., Krishnamurthy, L., & Hamid, A. (2005). Genotypic variation in root systems of chickpea (Cicer arietinum L.) across environments. Journal of Agronomy and Crop Science, 191(6), 464-472. https://doi.org/10.1111/j.1439-037X.2005.00177.x

Zaman-Allah, M., Jenkinson, D. M., & Vadez, V. (2011). A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 62(12), 4239-4252. https://doi.org/10.1093/jxb/err139

Downloads

Published

10. 11. 2021

Issue

Section

Original Scientific Article

How to Cite

SHEKARI, Z., TAHMASEBI, Z., KANOUNI, H., & MEHRABI, A. ashraf. (2021). Marker-trait association study for root-related traits in chickpea (Cicer arietinum L.). Acta Agriculturae Slovenica, 117(3), 1–13. https://doi.org/10.14720/aas.2021.117.3.2167

Similar Articles

1-10 of 413

You may also start an advanced similarity search for this article.