Investigation about wetting ability (surface tension) of water used for preparation of pesticide solutions
DOI:
https://doi.org/10.14720/aas.2021.117.3.1456Keywords:
surface tension, pesticides, plant protection products, sprayers, wetting abilityAbstract
The investigation about surface tension of water used for preparation of pesticide solutions reveals it is quite diverse and changeable without any logical correlation towards location, time, and type of water source. Moreover, spraying with solutions with lower surface tension give bigger flow rates due to the lower resistance of fluid to the nozzles. The conducted trials show that plant surfaces with more rough texture require to be sprayed with pesticide solutions with lower surface tension. The wax content of the surfaces has no significant impact on surface tension requirement.
References
Bartell, F. E., & Zuidema, H. H. (1936). Wetting characteristics of solids of low surface tension such as talc, waxes and resins. Journal of the American Chemical Society, 58(8), 1449-1454. https://doi.org/10.1021/ja01299a041
Beattie, J. K., Djerdjev, A. M., Gray-Weale, A., Kallay, N., Lützenkirchen, J., Preočanin, T., & Selmani, A. (2014). pH and the surface tension of water. Journal of Colloid and Interface Science, 422, 54-57. https://doi.org/10.1016/j.jcis.2014.02.003
Bergström, L. (1990). Use of lysimeters to estimate leaching of pesticides in agricultural soils. Environmental Pollution, 67(4), 325-347. https://doi.org/10.1016/0269-7491(90)90070-S
Grisso, R. D., Hewett, E. J., Dickey, E. C., Schnieder, R. D., & Nelson, E. W. (1988). Calibration accuracy of pesticide application equipment. Applied Engineering in Agriculture, 4(4), 310-315. https://doi.org/10.13031/2013.26624
Bonn, D., Eggers, J., Indekeu, J., Meunier, J., & Rolley, E. (2009). Wetting and Spreading. Reviews of Modern Physics, 81(2), 739. https://doi.org/10.1103/RevModPhys.81.739
Cerruto, E., Failla, S., Longo, D., & Manetto, G. (2016). Simulation of water sensitive papers for spray analysis. Agricultural Engineering International: CIGR Journal, 18(4), 22-29.
Claussen, W. F. (1967). Surface tension and surface structure of water. Science, 156(3779), 1226-1227. https://doi.org/10.1126/science.156.3779.1226
Crease, G. J., Hall, F. R., & Thacker, J. R. M. (1991). Reflection of agricultural sprays from leaf surfaces. Journal of Environmental Science & Health Part B, 26(4), 383-407. https://doi.org/10.1080/03601239109372744
De Schampheleire, M., Nuyttens, D., Baetens, K., Cornelis, W., Gabriels, D., & Spanoghe, P. (2009). Effects on pesticide spray drift of the physicochemical properties of the spray liquid. Precision Agriculture, 10(5), 409-420. https://doi.org/10.1007/s11119-008-9089-6
Ellis, M. B., Tuck, C. R., & Miller, P. C. H. (2001). How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180(3), 267-276. https://doi.org/10.1016/S0927-7757(00)00776-7
Gittens, G. J. (1969). Variation of surface tension of water with temperature. Journal of Colloid and Interface Science, 30(3), 406-412. https://doi.org/10.1016/0021-9797(69)90409-3
Hess, F. D., & Foy, C. L. (2000). Interaction of Surfactants with Plant Cuticles1. Weed Technology, 14(4), 807-813. https://doi.org/10.1614/0890-037X(2000)014[0807:IOSWPC]2.0.CO;2
Kalová, J., & Mareš, R. (2015). Reference values of surface tension of water. International Journal of Thermophysics, 36(7), 1396-1404. https://doi.org/10.1007/s10765-015-1907-2
Lee, C. H., Hwang, I. J., & Kim, J. K. (1988). Macro-and microstructure of Chinese cabbage leaves and their texture measurements. Korean Journal of Food Science and Technology, 20(6), 742-748. https://doi.org/10.9721/KJFST.2011.43.6.742
Macy, R. (1935). Surface tension by the ring method. Applicability of the du Nouy apparatus. Journal of Chemical Education, 12(12), 573 https://doi.org/10.1021/ed012p573.
Matthews, G. (2008). Pesticide application methods. John Wiley & Sons.
Miller, P. C. H., & Ellis, M. B. (2000). Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Protection, 19(8-10), 609-615. https://doi.org/10.1016/S0261-2194(00)00080-6
Nayar, K. G., Panchanathan, D., McKinley, G. H., & Lienhard, J. H. (2014). Surface tension of seawater. Journal of Physical and Chemical Reference Data, 43(4), 043103. https://doi.org/10.1063/1.4899037
Pallas, N. R., & Pethica, B. A. (1983). The surface tension of water. Colloids and Surfaces, 6(3), 221-227. https://doi.org/10.1016/0166-6622(83)80014-6
Pockels, A. (1893). Relations between the surface-tension and relative contamination of water surfaces. Nature, 48, 152–154. https://doi.org/10.1038/048152a0
Prado, E. P., Raetano, C. G., do Amaral Dal, M. H. F., Chechetto, R. G., Ferreira Filho, P. J., Magalhaes, A. C., & Miasaki, C. T. (2016). Effects of agricultural spray adjuvants in surface tension reduction and spray retention on Eucalyptus leaves. African Journal of Agricultural Research, 11(40), 3959-3965. https://doi.org/10.5897/AJAR2016.11349
Salyani, M., & Fox, R. D. (1999). Evaluation of spray quality by oiland water-sensitive papers. Transactions of the ASAE, 42(1), 37. https://doi.org/10.13031/2013.13206
Semiao, V., Andrade, P., & da GraCa Carvalho, M. (1996). Spray characterization: numerical prediction of Sauter mean diameter and droplet size distribution. Fuel, 75(15), 1707-1714. https://doi.org/10.1016/S0016-2361(96)00163-9
Sridhar, M. K. C., & Reddy, C. R. (1984). Surface tension of polluted waters and treated wastewater. Environmental Pollution Series B, Chemical and Physical, 7(1), 49-69. https://doi.org/10.1016/0143-148X(84)90037-5
Stevens, P. J. G., Gaskin, R. E., & Zabkiewicz, J. A. (1988). Silwet L-77: a new development in spray adjuvants. In Proceedings of the New Zealand Weed and Pest Control Conference (Vol. 41, pp. 141-145). https://doi.org/10.30843/nzpp.1988.41.9880
Tschapek, M., Scoppa, C. O., & Wasowski, C. (1978). The surface tension of soil water. Journal of Soil Science, 29(1), 17-21. https://doi.org/10.1111/j.1365-2389.1978.tb02026.x
Turner, C. R., & Huntington, K. A. (1970). The use of a water sensitive dye for the detection and assessment of small spray droplets. Journal of Agricultural Engineering Research, 15(4), 385-387. https://doi.org/10.1016/0021-8634(70)90099-5
Wagner, P., Fürstner, R., Barthlott, W., & Neinhuis, C. (2003). Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. Journal of Experimental Botany, 54(385), 1295-1303. https://doi.org/10.1093/jxb/erg127
Yuan, Y., & Lee, T. R. (2013). Contact angle and wetting properties. In Surface science techniques (pp. 3-34). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_1
Zhu, F., Cao, C., Cao, L., Li, F., Du, F., & Huang, Q. (2019). Wetting behavior and maximum retention of aqueous surfactant solutions on tea leaves. Molecules, 24(11), 2094. https://doi.org/10.3390/molecules24112094
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Donyo Hristov Ganchev
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.