Inheritance of plant height, straw yield and flag leaf area in MBB x Gaviota durum wheat (Triticum durum Desf.) cross


  • Manel SALMI Ecology and Environment Department, Faculty of Life and Natural Sciences, University of Mostefa Ben Boulaid, Batna, Algeria
  • Zine El Abidine FELLAHI
  • Abdelkader BENBELKACEM
  • Hamenna BOUZERZOUR



non-allelic interaction, durum wheat, plant height, straw yield, flag leaf area, heritability


Plant height, straw mass and flag leaf area are recognized by physiologists as morphological markers of drought stress tolerance. Developing varieties intended for arid and semi-arid zones need to select for these traits. Understanding the genetic control of a given trait helps breeder to handle the segregating populations under study in a more efficient and consistent manner by choosing the best breeding method available to realize significant genetic advance. For this purpose, six generations: parents, F1, F2, BC1, BC2, derived from MBB x ‘Gaviota’ durum wheat (Triticum durum Desf.) cross were grown to investigate the nature of gene action involved in the inheritance pattern of the three traits. The results indicated that the six-parameter model fitted the best the data related to the variability present in the generation means of the studied traits. Generation mean analysis indicated that non-allelic interactions were important factors controlling the expression of these characters with complementary type of gene action governing FLA and STW inheritance. High heritability estimates, moderate to high expected responses to selection, significant genetic correlations with grain yield and greater role of non-additive effects in controlling the inheritance of the three studied traits suggested that breeding methods exploiting both fixable and non-fixable components be applied to break unfavorable linkage and to accumulate useful genes in the base population, followed by mono-trait or index based selection in late advanced generations.

Author Biography

  • Manel SALMI, Ecology and Environment Department, Faculty of Life and Natural Sciences, University of Mostefa Ben Boulaid, Batna, Algeria

    lecturer-reseacher in Ecology and Environment Department, Faculty of Life and Natural Sciences, University of Mostefa Ben Boulaid, Batna, Algeria


Akhtar, N., & Chowdhry, M. A. (2006). Genetic analysis of yield and some other quantitative traits in bread wheat. International Journal of Agriculture and Biology, 4, 523–527.

Annicchiarico, P., Abdellaoui, Z., Kelkouli, M., Zerargui. H. (2005). Grain yield, straw yield and economic value of tall and semi-dwarf durum wheat cultivars in Algeria. Journal of Agricultural Science, 143, 57–64.

Asadi, A., Valizadeh, M., Mohammadi, S. A., Khodarahmi. M. (2015). Genetic analysis of some physiological traits in wheat by generation means analysis under normal and water defict conditions. Biological forum, 7, 722-733.

Ataei R., Gholamhoseini, M., Kamalizadeh, M. (2017). Genetic analysis for quantitative traits in bread wheat exposed to irrigat-ed and drought stress conditions. Phyton, 86, 228-235.

Aziz, T., Mahmood, Z., Mahmood, K., Shazadi, A., Kazi, M., Rasheed, A. (2018). Genotypic variation and genotype x environment interaction for yield-related traits in synthetic hexaploid wheats under a range of optimal and heat-stressed environments. Crop Science, 58, 295-303.

Belagrouz A., Chennafi, H., Bouzerzour, H., Hakimi, M., Razem, R., Hadj Sahraoui, A. (2018). Relationships among water use efficiency and the physio-agronomic traits in durum wheat (Triticum durum Desf.) cultivars assessed under rainfed condi-tions of the eastern high plateaus of Algeria. The Journal Agriculture and Forestry, 64(3), 159-172.

Belkherchouche, H., Benbelkacem, A., Bouzerzour, H., Benmahammed. A. (2015). Flag leaf and awns ablation and spike shad-ing effects on spike yield and kernel weight of durum wheat (Triticum turgidum L. var. durum) under rainfed conditions. Advanc-es in Environmental Biology, 9(8), 184-191.

Chennafi, H., Hannachi, A., Touahria, O., Fellahi, Z.E.A., Makhlouf, M., Bouzerzour, H. (2011). Tillage and residue management effect on durum wheat [Triticum turgidum (L.) Thell. ssp. turgidum conv. durum (Desf.) Mackey] growth and yield under semi-arid climate. Advances in Environmental Biology, 3231–3241.

Cropstat. (2007). CropStat for Windows 7.2. Dapo, Manila IRRI - International Rice Research Institute.

Davidson, D. J. and Chevalier, P. M. (1992). Storage and remobilization of water-soluble carbohydrates in stems of spring wheat. Crop Science, 32, 186-190.

De Pace, C., Snidaro, D., Ciaffi, M., Vittori, D., Ciofo, A., Cenci, A. (2001). Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica, 117, 67–75.

Dorri, P., Khorasani, S. K., Shahrokhi, M. (2014). Generation means analysis. A case study of variance components in KSC 500 generations of maize (Zea mays L.). International Research Journal of Applied and Basic Sciences, 8(2), 194-200.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and manage-ment. Agronomy for sustainable development, Springer Verlag/EDP Sciences/INRA, 29, 85-212.

Fellahi, Z. E. A., Hannachi, A., Bouzerzour. H. (2020). Expected genetic gains from mono trait and index-based selection in ad-vanced bread wheat (Triticum aestivum L.) populations. Revista Facultad Nacional de Agronomía Medellín, 73, 9131-9141.

Fellahi, Z. E. A., Hannachi, A., Bouzerzour, H., Dreisigacker, S., Yahyaoui, A., Sehgal, D. (2017). Genetic analysis of morpho-physiological traits and yield components in F2 partial diallel crosses of bread wheat (Triticum aestivum L.). Revista Facultad Nacional de Agronomía Medellín, 70, 8237–8250.

Haddad, L., Bachir, A., Yakhlef, N., Benmahammed, A., Bouzerzour, H. (2021). Durum wheat [Triticum turgidum (L.) Thell ssp turgidum conv. durum (Desf.) Mackey] during the past 70-year in Algeria: Performance assessment of a set of historical varie-ties under rainfed conditions of the eastern high plateaus. Jordan Journal of Biological Sciences, 14. (in press).

Hallauer, A. R., & Mirinda Filho, J. B. (1989). Quantitative genetics in maize breeding. Second edition, Ames, IOWA State Univer-sity Press. 468 p.

Halloran, G. M., Knight, R., McWhirter, K. S., Sparrow, D. H. B. (1979). Plant breeding. Knight, R. (Ed.). Poly-Graphics Pty. Ltd. Brisbane, Australia. pp. 61 - 62.

Hammer, O., Harper, D. A. T., Ryan, P. D. (2001). Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(9).

Hannachi, A., Fellahi, Z. E. A. Bouzerzour, H., Boutakrabt. A. (2013). Diallel-cross analysis of grain yield and stress tolerance-related traits under semi-arid conditions

in Durum wheat (Triticum durum Desf.). Electronic Journal of Plant Breeding, 4, 1027-1033.

Ijaz U., Miullah, S., Kashif. M. (2013). Generation means analysis for five physiological traits of bread wheat under rainfed condition. Universal Journal of Plant Science, 1, 21-26.

Inamullah, A., Hussain, M., Hassan, G. F., Gul, R. (2006). Diallel analysis of the inheritance pattern of agronomic traits of bread wheat. Pakistan Journal of Boutany, 38, 1169-1175.

Jatayev, S., Sukhikh, I., Vavilova, V., Smolenskaya, S. E., Goncharov, N. P., Kurishbayev, A., Zotova L. (2020). Green revolution ‘stumbles’ in a dry environment: Dwarf wheat with Rht genes fails to produce higher grain yield than taller plants under drought. Plant, Cell and Environment, 43, 2355-2364.

Johnson, V. A., Biever, K. J., Haunold, A., Schmidt, J. W. (1966). Inheritance of plant height, yield of grain, and other plant and seed characteristics in a cross of hard red winter wheat, Triticum aestivum L.. Crop Science, 6, 307-312.

Joshi, S. K., Sharma, S. N., Singhania, D. L., Sain. R. S. (2004). Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L. em. Thell). Hereditas, 141, 115-121.

Kearsey, M. J. and Pooni, H. S. (1996). The genetic analysis of quantitative traits. Chapman and Hall, London. 396 p.

Koots, K. R., Gibson. J. P. (1996). Realized sampling variances of estimates of genetic parameters and the difference between genetic and phenotypic correlations. Genetics, 143, 1409-1416.

Kwon, S. H. and Torrie, J. H. (1964). Heritability and inter-relationship among traits of two soybean populations. Crop Science, 4, 196-198.

Liu, H., Searle, I. R., Mather, D. E., Able, A. J., Able. J. A. (2015). Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop and Pasture Science, 66, 1024–1038.

Manivannan, N. (2014). TNAUSTAT- Statistical package:

Mansouri, A., Oudjehih, B., Benbelkacem, A. Fellahi, Z. E. A., Bouzerzour, H. (2018). Variation and relationships among agro-nomic traits in durum wheat [Triticum turgidum (L.) Thell. ssp. turgidum conv. durum (Desf.) Mackey] under south Mediter-ranean growth conditions: Stepwise and path analyses. International Journal of Agronomy, 1-11.

Mather, K., & Jinks, J. L. (1982). Biometrical Genetics. The Study of Continuous Variation. Third edition. Chapman and Hall, Lon-don – New York, pp. 279.

Mohsin, T., Khan, N., Naqvi, F. N. (2009). Heritability, phenotypic correlation and path coefficient studies for some agronomic characters in synthetic elite lines of wheat, Journal of Food, Agriculture and Environment, 7, 278–282.

Munir, M., Chowdhry, M. A., Ahsan, M. (2007). Generation mean studies in bread wheat. Internaional Journal of Agriculure and Biology, 9, 282-286.

Novoselović, D., Barić, M., Drenzer, G., Gunjača, J., Lalić, A. (2004). Quantitative inheritance of some wheat plant traits. Genet-ics and Molecular Biology, 27, 92-98.

Ojaghi, J., & Akhundova, E. (2010). Genetic analysis for yield and its components in doubled haploid wheat. African Journal of Agricultural Research, 5, 306-315.

Punia, S. S., Baldev, R. Koli, N. R. Ranwah, B. R. Rokadia, P., Maloo, S. R. (2011). Genetic architecture of quantitative traits in field pea. Journal of Food Legumes, 24, 299–303.

Rabti, A., Mekaoussi, R., Fellahi, Z. E. A., Hannachi, A., Benbelkacem, A., Benmahammed, A., Bouzerzour, H. 2020. Characteri-zation of old and recent durum wheat [Triticum turgidum (L.) Tell. convar. durum (Desf.) Mackey] varieties assessed under south Mediterranean conditions. Egyptian Journal of Agronomy, 42, 307-320.

Rad, M. R. N., Kadir, M. A., Yusop, M. R., Jaafar, H. Z., Danaee, M. (2013). Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Austoralian Journal of Crop Science, 7, 407-413.

Royo, C., Nazco, R., Villegas, D. (2014). The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genetic Resources and Crop Evolution, 61, 1345–1358.

Saleem, M., Aslam, M., Muhammad, C., Kashif, K., Khaliq. M. (2005). Inheritance pattern of plant height, grain yield and some leaf characteristics of spring wheat. International Journal of Agriculture and Biology, 7, 1019-1025

Salmi, M., Benmahammed, A., Benderradji, L., Fellahi, Z. E. A., Bouzerzour, H., Oulmi, A., Benbelkacem. A. 2019. Generation means analysis of physiological and agronomical targeted traits in durum wheat (Triticum durum Desf.) cross. Revista Fac-ultad Nacional de Agronomía Medellín, 72, 8971-8981.

Shabbir, G., Kiran, T., Akram, Z., Ijaz, M., Shah. K. N. (2012). Genetics of some biometric traits in bread wheat (Triticum aes-tivum L.). Journal of Agricultural Research, 50, 457-468.

Shayan, S., Moghaddam Vahed, M., Norouzi, M., Mohammadi, A., Tourchi, M., Molaei. B. (2018). Inheritance of agronomical and physiological traits in the progeny of Moghan3 and Arg bread wheat varieties cross. Plant Genetic Research, 4, 43-60.

Singh, R. P., Huerta-Espino, J., Rajaram, S., Crossa, J. (2001). Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica, 119, 241–244.

Sirohi, A., & Gupta, V. P. (1993). Additive, dominance and epistatic components of variation for seed protein content in pea (Pisum sativum L.). Indian Journal of Genetics, 53, 252-256.

Slafer, G. A., Araus, J. L. Royo, C., Del Moral, L. F. G. (2005). Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Annals of Applied Biology, 146, 61–70.

Spagnoletti-Zeuli, P. L., & Qualset, C. O. (1990). Flag leaf variation and the analysis of diversity in durum wheat. Plant Breeding, 105, 189–202.

Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics, McGraw-Hill Books, New York. 481 p.

Velu, G., Singh, R. P. Huerta, J., Guzman C. (2017). Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crops Research, 21, 373–377.

Yang, D., Liu, Y., Cheng, H., Chang, L., Chen, J., Chai, S., Li, M. (2016). Genetic dissection of flag leaf morphology in wheat (Triti-cum aestivum L.) under diverse water regimes. BMC Genetics, 17, 1-15.

Yani, S. C., & Rashidi, V. (2012). Selection indices in the improvement of wheat grain yield on drought stress conditions, the success of selection in the cross populations depend on the knowledge of inheritance pattern of the desired traits. African Jour-nal of Agricultural Research, 7, 1177-1183.



24. 12. 2021



Original Scientific Article

How to Cite

SALMI, M., FELLAHI, Z. E. A., BENBELKACEM, A., BENMAHAMMED, A., & BOUZERZOUR, H. (2021). Inheritance of plant height, straw yield and flag leaf area in MBB x Gaviota durum wheat (Triticum durum Desf.) cross. Acta Agriculturae Slovenica, 117(4), 1-10.

Similar Articles

1-10 of 836

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)