Introduction of the best criterion for evaluation of tolerance to drought stress in sorghum’s genotypes

Authors

  • Leyla NAZARI Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
  • Ebrahim DEHGHANIAN
  • Afshar ESTAKHR
  • Azim KHAZAEI
  • Behzad SORKHILALEHLOO
  • Mohammad Reza ABBASI

DOI:

https://doi.org/10.14720/aas.2021.117.4.2176

Keywords:

sorgum, drought stress, grain yield, water productivity, drought response indices

Abstract

Sorghum (Sorghum bicolor (L.) Moench) is the fifth important cereal considered a drought-tolerant crop. However, its reduction of grain yield considerably occurs in a shortage of water. In the current study, 10 sorghum genotypes were assessed for their grain yield under normal irrigation and water deficit irrigation. As well, the efficacy of several drought indices was evaluated for the selection of high-yield and drought-tolerant genotypes. The experiment was conducted as a split-plot considering three irrigation levels as main-plot and 10 genotypes as sub-plot. Correlation among the indices, clustering of the genotypes along with principal component analysis was employed. Yield production was significantly and positively correlated with indices MP (mean productivity), STI (stress tolerance index), GMP (geometric productivity), HM (harmonic mean), and YI (yield index) in all the irrigation levels. Therefore, these indices are more effective in the selection of high-yielding genotypes under different water conditions. Rank means of stress indices for each genotype revealed that genotype TN-04-79 in mild deficit irrigation and genotypes KGS23 and TN-04-79 in severe deficit irrigation were the most tolerant.

References

Abd El-Mohsen, A. A., Abd El-Shafi, M. A., Gheith, E. M. S., Suleiman, H. S. (2015). Using different statistical pro-cedures for evaluating drought tolerance indices of bread wheat genotypes. Advance in Agriculture and Biology, 4, 19-30. https://doi.org/10.15192/PSCP.AAB.2015.4.1.1930

Abebe, T., Belay, G., Tadesse, T., Keneni, G. (2020). Selection efficiency of yield based drought tolerance indices to identify superior sorghum [Sorghum bicolor (L.) Moench] genotypes under two-contrasting environments. Af-rican Journal of Agricultural Research, 15(3), 379-392. https://doi.org/10.5897/AJAR2020.14699

Ali, M. H., Talukder, M. S. U. (2008). Increasing water productivity in crop production: a synthesis. Agricultural Water Management, 95, 1201-1213. https://doi.org/10.1016/j.agwat.2008.06.008

Almodares, A., Hotjatabady, R. H., Mirniam, E. (2013). Effects of drought stress on biomass and carbohydrate contents of two sweet sorghum cultivars. Journal of Environmental Biology, 34, 585-589.

Anwar, H. A., Perveen, R., Mansha, M., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U., Sajid, M., Aslam, H. M. U., Alam, M. M., Rizwan, M., Ikram, R. M., Alghanem, S. M. S., Rashid, A., Khan, K. A. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 27(7), 1818-1823. https://doi.org/10.1016/j.sjbs.2019.12.009

Ashraf, M., Foolad, M. R. (2007). Roles of glycine, betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton, Florida, USA. Rosielle A. A., Hamblin J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Bouslama, M., Schapaugh, W. T. (1984). Stress tolerance in soybean. Part 1: evaluation of three screening tech-niques for heat and drought tolerance. Crop Science, 24, 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x

Chimonyo, V. G. P., Modi, A. T., Mabhaudhi, T. (2016). Water use and productivity of a sorghum-cowpea-bottle gourd intercrop system. Agricultural Water Management, 165, 82-96. https://doi.org/10.1016/j.agwat.2015.11.014

Clarke, D., Smith, M., El-Askari, K. (2001). CropWat for Windows: User Guide; University of Southampton: Southamp-ton, UK.

Clarke, J. M., DePauw, R. M., Townley Smith, T. F. (1992). Evaluation of methods for quantification of drought tolerance in wheat. Crop Science, 32, 423-428. https://doi.org/10.2135/cropsci1992.0011183X003200030029x

Devnarain, N., Crampton, B. G., Chikwamba, R., Becker, J. V. W., & O’Kennedy, M. M. (2016). Physiological re-sponses of selected African sorghum landraces to progressive water stress and re-watering. South African Jour-nal of Botany, 103, 61-9. https://doi.org/10.1016/j.sajb.2015.09.008

Doorenbos, J., Kassam, A. H. (1986). Yield Response to Water, Irrigation and Drainage Paper 33. Food and Agricultural Organization of the United Nations: Rome.

Doorenbos, J., Pruitt, W. O. (1977). Crop water requirements. Revised 1977. FAO Irrig Drain. Paper 24. FAO of the United Nations, Rome, pp 144.

Fernandez, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Taiwan 13-16 August 1992, 257-270 p.

Fischer, R. A., Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, 897-912. https://doi.org/10.1071/AR9780897

Fracasso, A., Trindade, L., Amaducci, S. (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology, 190, 1-14. https://doi.org/10.1016/j.jplph.2015.10.009

Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77, 523-531. https://doi.org/10.4141/P96-130

Golabadi, M. A., Arzani, S. A., Maibody, M. (2006). Assessment of drought tolerance in segregating populations in durum wheat. African Journal of Agricultural Research, 1(5), 62-171.

Golestani Araghi, S., Assad, M. T. (1998). Evaluation of four Screening Techniques for Drought Resistance and Their Relationship to Yield Reduction Ratio in Wheat. Euphytica. 103, 293-299. https://doi.org/10.1023/A:1018307111569

Hadebe, S. T., Mabhaudhi, T., Modi, A. T. (2020). Water productivity of selected Sorghum genotypes under rainfed conditions. International Journal of Plant Production, 14, 259-272. https://doi.org/10.1007/s42106-019-00082-4

Jafari, A., Paknejad, F., Jami Al-Ahmadi, M. (2009). Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. International Journal of Plant Production, 3(4), 33-38. https://doi.org/10.22069/IJPP.2012.661

Kashiwagi, J., Krishnamurthy, L., Purushothaman, R., Upadhyaya, H. D., Gaur, P. M., Gowda, C. L. L., et al. (2015). Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crop Research, 170, 47-54. https://doi.org/10.1016/j.fcr.2014.10.003

Khalili, M., Pour-Aboughadareh, A., Naghavi, M. R., MohammadAmini, E. (2014). Evaluation of drought tolerance in safflower genotypes based on drought tolerance indices. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 214-218. https://doi.org/10.15835/nbha4219331

Ludlow, M. M., Muchow, R. C. A Critical Evaluation of Traits for Improving Crop Yields in Water-Limited Environ-ments1. In: Brady N. C., editor. Advances in Agronomy. Vol. 43. Academic Press; Cambridge, MA, USA: 1990. pp.

-153. https://doi.org/10.1016/S0065-2113(08)60477-0

Maman, N., Lyon, D. J., Mason, S. C., Galusha, T. D., Higgins, R. (2003). Pearl millet and grain sorghum yield re-sponse to water supply in Nebraska. Agronomy Journal, 95, 1618-1624. https://doi.org/10.2134/agronj2003.1618

Mickky, B., Aldesuquy, H., Elnajar, M. (2019). Uni- and multi-variate assessment of drought response yield indices in 10 wheat cultivars. Journal of Crop Science and Biotechnology, 22, 21-29. https://doi.org/10.1007/s12892-018-0221-0

Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80, 758-762.

Mohammadi, M., Karimizadeh, F., Abdipour, M. (2011). Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Australian Journal of Crop Science, 5, 487-493.

Mutava, R. N., Prasad, P. V. V., Tuinstra, M. R., Kofoid, M. D., Yu, j. (2011). Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Research, 123, 10-18. https://doi.org/10.1016/j.fcr.2011.04.006

Nikneshan, P., Tadayyon, A., Javanmard, M. (2019). Evaluating drought tolerance of castor ecotypes in the center of Iran. Heliyon, 5, e01403. https://doi.org/10.1016/j.heliyon.2019.e01403

Nouri, A., Etminan, A., Jaime, A., Silva, T. D., Mohammadi, R. (2011). Assessment of yield, yield related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Sci-ence,

, 8-16.

Ottman, M. J., Kimball, B. A., Pinter, P. J. Jr., Wall, G. W., Vanderlip, R. L., Leavitt, S. W., LaMorte, R. L., Matthias, A. D., Brooks, T. J. (2001). Elevated CO2 increases sorghum biomass under drought conditions. New Phytologist, 150, 261-273. https://doi.org/10.1046/j.1469-8137.2001.00110.x

Priyanka, V., Kumar, R., Dhaliwal, I., Kaushik, P. (2021). Germplasm conservation: Instrumental in agricultural bio-diversity-A review. Sustainability, 13(12), 6743. https://doi.org/10.3390/su13126743

Silva, M. D. A., Silva, J. A. G. D., Enciso, J., Sharma, V., Jifon, J. (2008). Yield components as indicators of drought tolerance of sugarcane. Scientia Agricola, 65, 620-627. https://doi.org/10.1590/S0103-90162008000600008

Surendran, U., Raja, B. A. P., Kumar, V., Rajan, K., Jayakumar, M. (2019). Analysis of drought from humid, semi-arid and arid regions of India using DrinC model with different drought indices. Water Resources Management, 33, 1521-1540. https://doi.org/10.1007/s11269-019-2188-5

Tari, I., Laskay, G., Takács, Z., Poór, P. (2013). Response of sorghum to abiotic stresses: A review. Journal of Agron-omy and Crop Science, 199, 264-274. https://doi.org/10.1111/jac.12017

Zhang, X., Lei, L., Lai, J., Zhao, H., Song, W., (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18, 68. https://doi.org/10.1186/s12870-018-1281-x

Downloads

Published

24. 12. 2021

Issue

Section

Original Scientific Article

How to Cite

NAZARI, L., DEHGHANIAN, E., ESTAKHR, A., KHAZAEI, A., SORKHILALEHLOO, B., & ABBASI, M. R. (2021). Introduction of the best criterion for evaluation of tolerance to drought stress in sorghum’s genotypes. Acta Agriculturae Slovenica, 117(4), 1-13. https://doi.org/10.14720/aas.2021.117.4.2176

Similar Articles

1-10 of 553

You may also start an advanced similarity search for this article.