In vitro antifungal potential of surfactin isolated from rhizospheric Bacillus thuringiensis Berliner 1915 against maize (Zea mays L.) fungal phytopathogen Fusarium graminearum Schwabe

Authors

  • Muddasir KHAN Department of Health and Biological Sciences, Abasyn University Peshawar, Pakistan
  • Muhammad SALMAN Department of Health and Biological Sciences, Abasyn University Peshawar, Pakistan
  • Syed Hussain SHAH Department of Health and Biological Sciences, Abasyn University Peshawar, Pakistan
  • Muhammad ISRAR Department of Microbiology, Abbottabad University of Science and Technology, Pakistan

DOI:

https://doi.org/10.14720/aas.2021.117.4.2345

Keywords:

surfactin, Bacillus, biological control, HPLC, Fusarium graminearum

Abstract

Fusarium graminearum fungus cause significant loss in maize (Zea mays L.) and other cereal crops all over the world. The usage of chemical agents cause severe environmental problems. Bacillus species and other plant growth-promoting bacteria (PGPR) play key role in biopesticide development. A wide range of environmentally safe antimicrobial agents are already being manufactured. The current investigation was focused on exploring the antifungal activity of Bacillus thuringiensis lipopeptide surfactin against fungal phytopathogen Fusarium graminearum. B. thuringensis was isolated from the rhizosphere of maize crop and cultivated to produce lipopeptides. Surfactin was identified by high-performance liquid chromatography (HPLC) from the extract at 210 nm, retention time 3-5 minutes and the obtained peaks area was 3.990. The growth of F. graminearum was successfully inhibited by surfactin at different concentrations. Among these, 80 % concentration showed the highest zone of inhibition in comparison to 60 %, 40 % and 20 % concentrations (p < 0.005), respectively. The current study concludes B. thuringensis lipopeptide surfactin has a high potential to inhibit the growth of F. graminearum.

References

Amin, M., Rakhisi Z., Ahmady A. Z. (2015). Isolation and identification of Bacillus Species from soil and evaluation of their antibacterial properties. Avicenna Journal of Clinical Microbiology and Infection, 2(1), e2323. https://doi.org/10.17795/ajcmi-23233

Deepak, R., Jayapradha, R. (2015). Lipopeptide biosurfactant from Bacillus thuringiensis pak 2310: a potential antag-onist against Fusarium oxysporum. Journal de Mycologie Medicale, 25(1), e15-e24. https://doi.org/10.1016/j.mycmed.2014.10.011

Dukare, A., Paul, S., Arambam, A. (2020). Isolation and efficacy of native chitinolytic rhizobacteria for biocontrol activities against fusarium wilt and plant growth promotion in pigeon pea (Cajanus cajan L.). Egyptian Journal of Biological Pest Control, 30, 56. https://doi.org/10.1186/s41938-020-00256-7

Dunlap, C. A., Schisler, D. A., Price, N. P., Vaughn, S. F. (2011). Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. Journal of Microbiology, 49, 603–609. https://doi.org/10.1007/s12275-011-1044-y

Hue, N., Serani, L., Laprevote, O. (2001). Structural investigation of cyclic peptidolipids from Bacillus subtilis by high energy tandem mass spectrometry. Rapid Communication. Mass Spectrometry, 15, 203–209. https://doi.org/10.1002/1097-0231(20010215)15:3<203::AID-RCM212>3.0.CO;2-6

Hussain, N., Hussain, A., Ishtiaq, M., Azam, S., Hussain, T. (2013). Pathogenicity of two seed-borne fungi com-monly involved in maize seeds of eight districts of Azad Jammu and Kashmir, Pakistan. African Journal of Biotech-nology, 12(12), 1363-1370.

John, F. L., Brett, A. S. (2016). The Fusarium laboratory manual, First edition, Blackwell Publishing, 2016.

Kant, P., Reinprecht, Y., Martin, C. J., Islam, R., Pauls, K. P. (2011). Disease resistance / Pathology / Fusarium. Elsevier, 00263-4. https://doi.org/10.1016/B978-0-08-088504-9.00263-4

Khan, M., Salman, M., Jan, S. A., Shinwari, Z. K. (2021). Biological control of fungal phytopathogens: A compre-hensive review based on Bacillus species. MOJ Biology Medicine, 6(2), 90‒92. https://doi.org/10.15406/mojbm.2021.06.00137

Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., et al. (2004). Purification and characterization of a lipopep-tide produced by Bacillus thuringiensis CMB26. Journal of applied microbiology, 97(5), 942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x

Kim, P. I., Ryu, J., Kim, Y. H., Chi, Y. T. (2010). Production of biosurfactant lipopeptides iturin A, fengycin and sur-factin from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporides. Journal of Microbiology and Biotechnology, 20, 138–145. https://doi.org/10.4014/jmb.0905.05007

Kwon, S., Rupp, O., Brachmann, A., Blum, C. F., Kraege, A., Goesmann, A., Feldbrügge, M. (2021). mRNA inventory of extracellular vesicles from Ustilago maydis. Journal of Fungi, 7(7), 562. https://doi.org/10.3390/jof7070562

Madhi, Q. H., Jumaah, A. M. (2020). Affectivity evaluation of Bacillus subtilis in controlling eggplant root rot caused by Rhizoctonia solani and Fusarium solani. IOP Conference Series: Earth and Environmental Science, 553, 012026. https://doi.org/10.1088/1755-1315/553/1/012026

Mater, S. M., El-Kazzaz, S. A., Waigh, E. E., El-Diwany, A. I., Moustafa, H. E., Abo-Zaid, G. A., Elsalam, A. H. E., Hafez, E. E. (2009). Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi. Biotechnology, 8(1), 53-61. https://doi.org/10.3923/biotech.2009.53.61

Meena, K. R., Saha, D., Kumar, R. (2019). Isolation and partial characterization of iturin like lipopeptides (a bio-control agent) from a Bacillus subtilis strain. International Journal of Current Microbiology and Applied Sciences, 3(10), 121-126.

Mubarak, M. Q. E., Hassan, A. R., Hamid, A. A., Khalil, S., Isa, M. H. M. (2015). A simple and effective isocratic HPLC method for fast identification and quantification of surfactin. Sains Malaysiana. https://doi.org/10.17576/jsm-2015-4401-16

Ntushelo, K., Ledwaba, L. K., Rauwane, M. E., Adebo, O. A., Njobeh, P. B. (2019). The mode of action of Bacillus species against Fusarium graminearum, tools for investigation and future prospects. Toxins, 11, 606. https://doi.org/10.3390/toxins11100606

Pal, K. K., Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 1-25. https://doi.org/10.1094/PHI-A-2006-1117-02

Rauwane, M. E., Ogugua, U. V., Kalu, C. M., Ledwaba, L. K., Woldesemayat, A. A., Ntushelo, K. (2020). Pathogenic-ity and virulence factors of Fusarium graminearum including factors discovered using next generation sequencing technologies and proteomics. Microorganisms, 8(2), 305. https://doi.org/10.3390/microorganisms8020305

Rehman, F., Adnan, M., Kalsoom, M., Naz, N., Husnain, M. G., Ilahi, H., Ilyas, M. A., Yousaf, G., Tahir, R., Ahmad, U. (2021). Seed-borne fungal diseases of maize (Zea mays L.): A review. Agrinula: Jurnal Agroteknologi Dan Perke-bunan, 4(1), 43-60. https://doi.org/10.36490/agri.v4i1.123

Ren, J., Li, Z., Wu, P., Zhang, A., Liu, Y., Hu, G., et al. (2021). Genetic dissection of quantitative resistance to com-mon rust (Puccinia sorghi) in tropical maize (Zea mays L.) by combined genome-wide association study, linkage mapping, and genomic prediction. Frontiers in plant science, 12, 1338. https://doi.org/10.3389/fpls.2021.692205

Saleem, M. J., Bajwa, R., Hannan, A., Qaiser, T. A. (2012). Maize seed storage mycoflora in Pakistan and its chem-ical control. Pakistan Journal of Botany, 44(2), 807-812.

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583-1594. https://doi.org/10.1111/jam.14506

Shafi, J., Tian, H., Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950

Snetselaar, K., McCann, M. (2017). Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Mycologia, 109(1), 140-152. https://doi.org/10.1080/00275514.2016.1274597

Snook, M. E., Mitchell, T., Hinton, D. M., Bacon, C. W. (2009). Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides, Journal of Agri-culture and Food Chemistry, 57, 4287–4292. https://doi.org/10.1021/jf900164h

Uddin, M. N., Nasrullah, Khan, M. (2019). Isolation and Identification of fungal pathogens associated with diseas-es of onion crop in district Swat, Pakistan. Abasyn Journal of Life Sciences, 2(2), 91-99.

Vitullo, D., Di Pietro, A., Romano, A., Lanzotti, V., Lima, G. (2012). Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathology, 61, 689–699. https://doi.org/10.1111/j.1365-3059.2011.02561.x

Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E. (2014). Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE, 9, e92486. https://doi.org/10.1371/journal.pone.0092486

Downloads

Published

24. 12. 2021

Issue

Section

Original Scientific Article

How to Cite

KHAN, M., SALMAN, M., SHAH, S. H., & ISRAR, M. (2021). In vitro antifungal potential of surfactin isolated from rhizospheric Bacillus thuringiensis Berliner 1915 against maize (Zea mays L.) fungal phytopathogen Fusarium graminearum Schwabe. Acta Agriculturae Slovenica, 117(4), 1-7. https://doi.org/10.14720/aas.2021.117.4.2345