Effects of soil nutrient amendments on growth and grain yield performances of quality protein maize grown under water deficit stress in Ibadan, Nigeria

Authors

  • Folake Bosede ANJORIN Institute of agricultural research and training,Obafemi Awolowo University Ibadan, Nigeria
  • Adeyinka ADEBAYO Institute of agricultural research and training,Obafemi Awolowo University Ibadan, Nigeria
  • Taiwo OMODELE Institute of agricultural research and training,Obafemi Awolowo University Ibadan, Nigeria
  • Adewale ADETAYO Institute of agricultural research and training,Obafemi Awolowo University Ibadan, Nigeria
  • James ADEDIRAN Institute of agricultural research and training,Obafemi Awolowo University Ibadan, Nigeria

DOI:

https://doi.org/10.14720/aas.2021.117.4.1887

Keywords:

fertilizer application rates, grain yield, growth and yield performances, quality protein maize, soil nutrient amendments, water deficit stress

Abstract

Drought and poor soil fertility are major limitations to crop production, globally. To investigate the impacts of water deficit stress (WS) and soil nutrient amendment (SA) on growth and yield performances of maize. A two years factorial field study was carried out, using a quality protein maize (QPM) (ILE-1-OB) and a non QPM–drought tolerant check (TZPBSR-W) varieties in Ibadan. Treatments include; six fertilizer application rates; 50 and 100 (kg N ha-1) ofNPK-20-10-10, 10.7 kg N ha-1of Tithonia Poultry Compost (TPC), 50 N + 10.7TPC and 100 N + 10.7TPC (kg N ha-1), three WS; the control (FW), WS at vegetative stage (STR1), and WS at reproductive stage (STR2). Leaf area (LA) and grain yield (GY) were measured using standard procedures. From the results, across WS, LA ranged from STR1 (458.90 ± 12.4) to FW (598.81 ± 13.1 cm2), GY varied from STR2 (2.94 ± 0.2 t ha-1) to FW (6.59 ± 0.2 t ha-1), across fertilizers, LA varied from 0 N (397.65 cm2) to 100N + 10.7TPC (622.71 cm2) and 50 N + 10.7TPC (611.03 cm2), respectively. The GY varied from 0 N (2.37 t ha-1) to 100 N + 10.7TPC (5.82 t ha-1) and 50N + 10.7TPC (5.26 t ha-1). Drought stress reduced growth and GY performances of QPM, while SA with 50 kg N ha-1 of inorganic fertilizer and 10.7 kg N ha-1 of TPC enhanced growth and grain yield of maize under WS.

References

Abayomi, Y. A., & Abidoye, T.O. (2009). Evaluation of cowpea genotypes for soil moisture stress tolerance under screen house conditions. African Journal of Plant Science, 3(10), 229-237. Online at http://www.academicjournals.org/AJPS

Abedi, T., Alemzadeh, A., & Kazemeni, S.A. (2010). Effect of organic and inorganic fertilizer on grain yield and protein banding pattern of wheat. Australian Journal of Crop Science, 4, 384-389.

Alvarez Prado, S., Sadras, V.O., & Borras, L. (2014). Independent genetic control of maize (Zea mays) kernel weight determination and its phenotypic plasticity. Journal of Experimental Botany, 65, 4479–4487. https://doi.org/10.1093/jxb/eru215

Ammani, A.A., Ja’afaru, A.K., Aliyu, J.A., & Arab, A.I. (2012). Climate change and maize production: Empirical evi-dence from Kaduna State. Journal of Agricultural Extension

Nigeria, 16(1), 1–9. https://doi.org/10.4314/jae.v16i1.1

Anjorin, F.B. (2018). Effects of water deficit stress, inorganic and organic fertilizers on growth and yield performance of quality Protein maize. Ph.D dissertation University of Ibadan, Ibadan.

Anjorin, F.B., Adejumo, S.A., Are, K.S., & Ogunniyan, D. J. (2017). Seedling establishment, biomass yield and water use efficiencies of four maize varieties as influenced by water deficit stress. Cercetări Agronomice în Moldova, 50(2), 21–34. https://doi.org/10.1515/cerce-2017-0012

Anjum S. A., Xie, X., Wang, L., Saleem, M. F., Man, C., & Wang. L. (2011). Morphological, physiological and bio-chemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032.

Annonymous, (2013).Corn Growth Stages Channel.com Technology Development & Agronomy, Musanto

Araus, J. L., Slafer, G.A., Royo, C., & Serret, M.D. (2008). Breeding for yield potential and stress adaptation in ce-reals. Critical Reviews in Plant Sciences, 27(6), 377–412. https://doi.org/10.1080/07352680802467736

Bolaños, J., & Edmeades, G.O. (1996). The importance of the anthesis-silking interval in breeding for drought tol-erance in tropical maize. Field Crops Research, 48, 65-80. https://doi.org/10.1016/0378-4290(96)00036-6

Borra’s, L., Westgate, M.E., & Otegui, M. E. (2003). Control of kernel weight and kernel water relation by post-flowering source-sink ratio in maize. Annals of Botany, 91, 857-867. https://doi.org/10.1093/aob/mcg090

Carpici, E.B. (2009). Evaluation of the effects of plant densities and nitrogen rates on stress physiology traits in silage corn (Zea mays L.) production. PhD thesis, Field Crops, Graduate School of Natural and Applied Sciences. Uludag Universi-ty, Bursa, Turkey

Cazetta, J.O., Seebauer, J. R., & Below, F.E. (1999). Sucrose and nitrogen supplies regulate growth of maize ker-nels. Annals of Botany, 84, 747-754. Article No. anbo.1999.0976, available online at http:}}www.idealibrary.com on. https://doi.org/10.1006/anbo.1999.0976

Chaves, M.M., Pereira, J.S., Maroco, J., Rodriques, M.L., Ricardo, M.L., Osorio, M.L., Carvatho, I., Faria, T., & Pinheiro, C. (2002). How plants cope with water stress in the field photosynthesis and growth? Annals of Botany, 89, 907–916. https://doi.org/10.1093/aob/mcf105

Denmead, O.T., & Shaw, R.H. (1960). The effects of soil moisture stress at different stages of growth on the de-velopment and yield of corn. Agronomy Journal, 52, 272–277. https://doi.org/10.2134/agronj1960.00021962005200050010x

Edmeades, G.O. (2013). Progress in achieving and delivering tolerance in maize. An update, SAAA Ithaca, NY. Global Sta-tus of Commercialized Biotech/GM Crops: 1- 4.

Duvnjak, M., Kljak, K., & Grbeša, D. (2021). Nitrogen Storage in Crops: Case Study of Zeins in Maize. DOI: 10.5772/intechopen. 95380. https://doi.org/10.5772/intechopen.95380

Edmeades, G.O., J. Bolaños, S.C. Chapman, H.R. Lafitte., & Bänziger, M. (1999). Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Science, 39(4), 1306–1315. https://doi.org/10.2135/cropsci1999.3951306x

Efthimiadou, A., Bilalis, D., Karkanis, A., & Froud-Williams, B. (2010). Combined organic/inorganic fertilization enhance soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Australian Journal of Crop Science, 4(9), 722-729.

Eghball, B., & Maranville, J.W. (1991). Interactive effects of water and nitrogen stresses on nitrogen utilization efficiency, leaf water status and yield of corn genotypes. Communications in Soil Science and Plant Analysis, 22, 1367-1382. https://doi.org/10.1080/00103629109368498

Farré, I., & Faci, J.M. (2009). Deficit irrigation in maize for reducing agricultural water use in a Mediterranean envi-ronment. Agricultural Water Management, 96(3), 383-394. https://doi.org/10.1016/j.agwat.2008.07.002

Fatemi, R., Kahraryan, B., Ghanbary, A., & Valizadeh, M. (2006). The evaluation of different irrigation regimes and water requirement on yield and yield components of corn. Journal of Agronomy and Crop Science, 12(1), 133-141.

Fernhill, (2011). Difference between compost and fertilizer. Retrieved online fernhillcompost.com, 3(15), 427-2821.

Francis, C.A., Rutger, J. N., & Palmer, A. F. E. (1969). Rapid method for plant leaf area estimation in maize (Zea mays L.) Crop science, 9(5), 537-539. https://doi.org/10.2135/cropsci1969.0011183X000900050005x

Gheysari, M., Mirlatifi, S.M., Bannayan, M., Homaee, M., & Hoogenboomb, G. (2009). Interaction of water and nitrogen on maize grown for silage. Agricultural Water Management, 96, 809-82. https://doi.org/10.1016/j.agwat.2008.11.003

Goldblatt, A. (2010). Agriculture: Facts and Trends, South Africa. Retrieved from http://aWSRssets.wwf.org.za/downloads/facts_brochure on 12/06/2017, 1-32.

Grant, R.F., Jackson, B.C., Kiniry, J.R., & Arkin, G.F. (1989). Water deficit timing effects on yield components in maize. Agronomy Journal, 81, 61-65. https://doi.org/10.2134/agronj1989.00021962008100010011x

Hammad, H.M., Ahmad, A.A., Wajid, A., & Akhter, J. (2011). Maize response to time and rate of nitrogen applica-tion. Pakistan Journal of Botany, 43(4), 1935-1942.

Hargurdeep, S. S., & Westgate, M. E. (2000). Reproductive development in grain crops during drought. Advances in Agronomy, 68(1), 59-96. https://doi.org/10.1016/S0065-2113(08)60843-3

Hokmalipour, S., Shiri-e-Janagard, M., Darbandi, M.H., Peyghami-e-Ashenaee, F., Hasanzadeh, M., Seiedi, M.N., & Shabani, R. (2010). Comparison of agronomical nitrogen use efficiency in three cultivar of corn as affect-ed by nitrogen fertilizer levels. World Applied Science Journal, 8(10), 1168-1174. http://www.redorbit.com/news/science/1070340/the_effects_of_shortterm_compost

Hufsteler, E.V., Boerma, H.R., Carter, T.E., & Earl, H.J. (2007). Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, 47, 25-35. https://doi.org/10.2135/cropsci2006.04.0243

Imadi, S.R., Gul, A., Dikilitas, M., Karakas, S., Sharma, I., & Ahmad P. (2016). Water stress: types, causes, and im-pact on plant growth and development. In: Ahmad P, ed. Water Stress and Crop Plants. Chichester, UK: John Wiley & Sons, Ltd; 343-355. doi: 10.1002/9781119054450.ch21. https://doi.org/10.1002/9781119054450.ch21

Jongdee, B., Fukai, S., & Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research, 76, 153-163. https://doi.org/10.1016/S0378-4290(02)00036-9

Khalili, M., Moghaddam, M., Kazemi Arbat, H., Shakiba, M.R., Kanooni, H., & Choukan, R. (2010). Effect of drought stress on different corn genotypes. Journal of Agricultural Science, 2(20), 67-84.

Kuscu, H. (2010). Effects of deficit irrigation on yield and yield components of maize grown under Bursa conditions. PhD thesis, Irrigation and Agricultural Structures, Graduate School of Natural and Applied Sciences, Uludag University, Bursa, Turkey.

Mansouri-Far, C.S.A., Sanavy, M.M., & Saberali, S.F. (2010). Maize yield response to deficit irrigation during low sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agricultural Water Management, 97(1), 12-22. https://doi.org/10.1016/j.agwat.2009.08.003

Monneveux, P.C., Sánchez, D., Beck, C., & Edmeades, G.O. (2006). Drought improvement in maize source popula-tion: evidence of progress. Crop Science, 41, 180-191. https://doi.org/10.2135/cropsci2005.04-0034

Ngetich, F.K., Shisanya, C.A., Mugwe, J., Mucheru-Muna, M., & Mugendi, D. (2012). The Potential of Organic and Inorganic Nutrient Sources in Sub-Saharan African Crop Farming Systems - A Global Perspective, Dr. Joann Whalen (Ed.), ISBN: 978-953-307-945-5, In Tech, Available from: http://www.intechopen.com/books/soil-fertility-improvement-and integrated-nutrient-management-a-global-perspective on 04/06/2016,Pp 1 -27.

Ogola, J.B.O., Wheeler, T.R., & Harris, P.M. (2002). Effects of nitrogen and irrigation on water use of maize crops. Field Crops Research, 78, 105-117. www.elselvier.com. https://doi.org/10.1016/S0378-4290(02)00116-8

Pandey, R.K., Marienville, J.W., & Adum, A. (2000). Deficit irrigation and nitrogen effect on maize in a Sahelian environment. I .Grain yield components. Agricultural Water Management, 46, 1-13. https://doi.org/10.1016/S0378-3774(00)00073-1

Paponov, I.A., Sambo, P., Erley, G.S.A., Presterl, T., Geiger, H.H., & Engels, C. (2005). Kernel set in maize geno-types differing in nitrogen use efficiency in response to resource availability around flowering. Plant and Soil, 272, 101–110. https://doi.org/10.1007/s11104-004-4210-8

Ritchie, S.W., Hanway, J.J., & Benson, G.O. (1993). How a Corn Plant Develops. Iowa State Univ. p. Rpt. No. 48. Avail-able online at http://maize.agron.iastate.edu/corngrows.html

Rufino, C.A., Fernandes-Vieira, J., Martín-Gil, J., Júnior, J.S.A., Tavares, L.C., Fernandes-Correa, M., & Martín-Ramos, P. (2018). Water stress influence on the vegetative period yield components of different maize geno-types. Agronomy, 8(8),

https://doi.org/10.3390/agronomy8080151

Sah, R.P., Chakraborty, M., Prasad, K. et al. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Report, 10, 2944. https://doi.org/10.1038/s41598-020-59689-7

Sanginga, N., & Woomer, P. L. (2009). Integrated soil fertility management in Africa: principles, practices and developmental process. Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, Nairobi, 1-263.

Scoones, I., & Toulmin, C. (1998). Soil nutrient balances: What use for policy? Agriculture, Ecosystems & Environment, 71, 255-267. https://doi.org/10.1016/S0167-8809(98)00145-5

Smale, M., Byerlee, D., & Jayne, T.S. (2011). Maize Revolutions In Sub-Saharan Africa. World Bank Policy Research Working Paper, 5659, 1-47. https://doi.org/10.1596/1813-9450-5659

STAR, (2014). Statistical Tool For Agricultural Research Version version 2.0.1 Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute, Los Baños,Laguna.

Tambone, F., Genevini, P.D., &’Imporzano, G.A. (2007). The effects of short-term compost application on soil chemical properties and on nutritional status of maize plant. Compost Science and Utilization, 15(3), 176-183. https://doi.org/10.1080/1065657X.2007.10702330

Tan, Z. X., Lal, R., & Wiebe, K. D. (2005). Global soil nutrient depletion and yield reduction. Journal of Sustainable Agriculture, 26(1), 123-146. Available online at http://www.haworthpress.com/web/JSA. https://doi.org/10.1300/J064v26n01_10

Uhart, S.A., & Andrade, F.H. (1995). Nitrogen deficiency in maize. II.Carbon–nitrogen interaction effects on kernel number and grain yield. Crop Science, 35, 1384–1389. https://doi.org/10.2135/cropsci1995.0011183X003500050021x

Uribelarrea, M., Carcova, J., Otegui, M.E., & Westgate, M.E. (2002). Pollen production, pollination dynamics, and kernel set in maize. Crop Science, 42, 1910–1918. https://doi.org/10.2135/cropsci2002.1910

Vanlauwe, B., Descheemaeke, K., & Giller, K.E et al. (2015). Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 1, 1239–1286. https://doi.org/10.5194/soil-1-491-2015

Xu, Z.Z., Yu, Z.W., Wang, D., & Zhang, Y.L. (2005). Water use water Kisintili applications to yield. Turkish nitrogen accumulation and translocation for winter. Journal of Agriculture and Forestry, 23, 233-241.

Zemánek, P. (2011). Evaluation of compost influence on soil water retention. Acta Universitatis Agriculturae et Silvicul-turae Mendelianae Brunensis, 54(3), 227–232. https://doi.org/10.11118/actaun201159030227

Downloads

Published

24. 12. 2021

Issue

Section

Original Scientific Article

How to Cite

ANJORIN, F. B., ADEBAYO, A., OMODELE, T., ADETAYO, A., & ADEDIRAN, J. (2021). Effects of soil nutrient amendments on growth and grain yield performances of quality protein maize grown under water deficit stress in Ibadan, Nigeria. Acta Agriculturae Slovenica, 117(4), 1-14. https://doi.org/10.14720/aas.2021.117.4.1887

Similar Articles

11-20 of 935

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)