Performance and genetic diversity of some sesame (Sesamum indicum L.) accessions based on morpho-agronomic traits and seed proximate composition in Kwara State of Nigeria

Authors

  • David Adedayo ANIMASAUN Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
  • Stephen OYEDEJI Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
  • Latifat Bukola MUSA Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
  • Peter Adeolu ADEDIBU Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
  • Olabisi Fatimo ADEKOLA Department of Agronomy, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria

DOI:

https://doi.org/10.14720/aas.2022.118.1.1972

Keywords:

chlorophyll content, genetic diversity, morphometric attributes, oilseed

Abstract

This study evaluates eleven sesame accessions in Nigeria for performance and genetic diversity using morpho-agronomic traits, chlorophyll contents and nutrient composition in a complete randomized experimental design with five replicates. The results showed ‘Igboho Black’, ‘02M’ and ‘Kenan 4’ had the best growth attributes. Although ‘NGB0090’ and ‘Exsudan’ matured early, ‘E8’, ‘Bogoro Local’ and ‘Kenan 4’ had the best yield attributes. Seeds produced were predominantly milky-white, an accession had black seeds, while three produced white seeds. Plant height positively correlated with number of leaves and leaf area as well as peduncle length. Days to 50 % flowering positively correlates with days to maturity. So also the number of capsule per plant, capsule dimension and seeds per capsule. The moisture content in seeds of the accessions was < 3.5 %, ash (4.5-5.9 %), crude protein (5.3-7.4 %), fat and oil (53.6-60.5 %), and carbohydrate < 30 %. Out of the eight components that accounted for the observed variations, the PC-1 and PC-2 contributed 65.42 %. The dendrogram revealed that ‘NGB00960’ and ‘NGB00963’ which had ‘’Kenan 4’ as a distant member are the closest relatives, while ‘NGB00390’ and ‘01M’ are the most diverse. The study concludes that the accessions are genetically and phenotypically varied and the existing diversity can be harnessed for selecting high yielding and adaptable variety for the development of improved cultivars.

Author Biography

  • David Adedayo ANIMASAUN, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria

    Department of Plant Biology

     

References

A.O.A.C (Association of Official Analytical Chemists) (2000). Official Methods of Analysis, Washington D.C.

Adebisi, M.A., Ajala, M.O., Ojo, D.K., & Salau, A.W. (2005). Influence of population density and season on seed yield and its components in Nigeria sesame genotypes. Journal of Tropical Agriculture, 43(2), 13-18.

Adewale, B. D., Vroh-Bi, I., Dumet, D. J., Nnadi, S., Kehinde, O. B., Ojo, D. K., Adegbite, A. E., & Franco, J. (2015). Genetic diversity in Africa yam bean accessions based on AFLP markers: towards a platform for germplasm improvement and utilization. Plant Genetic Resources: Characterization and utilization, 13(2), 111-118. https://doi.org/10.1017/S1479262114000707

Adu-Gyamfi, R., Prempeh, R., & Issahaku, Z. (2019). Diversity assessment of some sesame (Sesamum indicum L.) genotypes cultivated in Northern Ghana Using Morphological and Simple Sequence Repeat (SSR) Markers. Advances in Agriculture, Article ID 6067891, 10pp. https://doi.org/10.1155/2019/6067891

Ajadi, B. S., Adeniyi, A., & Afolabi, M. T. (2011). Impact of climate on urban agriculture: case study of Ilorin City, Nigeria. Global Journal of Humanity and Social Sciences, 11, 25–29.

Animasaun, D. A., Morakinyo, J. A., Mustapha, O. T., & Krishnamurthy, R. (2015). Assessment of genetic diversity in accession of pearl millet (Pennisetum glaucum) and Napier grass (Pennisetum purpureum) using microsatellite (ISSR) markers. Iranian Journal of Genetics and Plant Breeding, 4(1), 25-35.

Animasaun, D. A., Morakinyo, J. A., Krishnamurthy, R., & Mustapha, O. T. (2017). Genetic divergence of Nigerian and Indian pearl millet accessions based on agronomical and morphological traits. Journal of Agricultural Sciences, 62(2), 115-131. https://doi.org/10.2298/JAS1702115A

Animasaun, D. A., Adikwu, V. O., Alex, G. A., Akinsunlola, T. P., Adekola, F. O., & Krishnamurthy, R. (2021): Morpho-agronomic traits variability, allelic polymorphism and diversity analysis of African yam bean: towards improving utilization and germplasm conservation. Plant Genetic Resources: Characterization and Utilization, 19(3), 216-228. https://doi.org/10.1017/S1479262121000253

Anthony, O., Ogunshakin, R., Vaghela, S., & Patel, B. (2015). Towards sustainable intensification of sesame-based cropping systems diversification in northwestern. Indian Journal of Food Security, 3(1), 1-5.

Arriel, N. H. C., Di Mauro, A. O., Arriel, E. F., Unêda-Trevisoli, S. H., Costa, M. M., Bárbaro, I. M., & Muniz, F. R. S. (2007). Genetic divergence in sesame based on morphological and agronomic traits. Crop Breeding and Applied Biotechnology, 7, 253-261. https://doi.org/10.12702/1984-7033.v07n03a04

Ashri, A. (1998). Sesame breeding. Plant Breeding Reviews, 16, 179-228. https://doi.org/10.1002/9780470650110.ch5

Azeez, M. A., Olowookere, M. B., Animasaun, D. A., & Bello, B. O. (2017). Utility of some floral characters in the assessment of genetic diversity in sesame (Sesamum indicum L.). Acta Agriculturae Slovenica, 109(1), 61-70. https://doi.org/10.14720/aas.2017.109.1.06

Banumathy, S., Manimaran, R., Sheeba, A., Manivannan, N., Ramya, B., Kumar, D., & Ramasubramanian, G. V. (2010). Genetic diversity analysis of rice germplasm lines for yield attributing traits. Electronic Journal of Plant Breeding, 1, 500-504.

Basu, S. K., Acharya, S. N., Bandara, M. S., Friebel, D., & Thomas, J. E. (2009). Effects of genotype and environment on seed and forage yield in fenugreek (Trigonella foenum-graecum L.) grown in western Canada. Australian Journal of Crop Science, 3, 305-314.

Baydar, H. (2005). Breeding for the improvement of the ideal plant type of sesame. Plant Breeding, 124, 263-265. https://doi.org/10.1111/j.1439-0523.2005.01080.x

Bedigian, D. (2004). Evolution of sesame revisited: domestication, diversity and prospect. Genetics Resources and Crop Evolution, 50, 779-780.

Bedigian, D., Seigler, D. S., & Harlan, J. R. (1985). Sesamin, sesamolin and the origin of sesame. Biochemical Systematics and Ecology, 13(2), 133-139. https://doi.org/10.1016/0305-1978(85)90071-7

Bedigian, D., & Harlan, J. R. (1986). Evidence for cultivation of sesame in the ancient world. Economic Botany, 40, 137–154. https://doi.org/10.1007/BF02859136

Behera, S., Padhiary, A.K., Nanda, P.K., Rout, S., Nayak, A., & Behera, D. (2017). Influence of plant growth regulators on chlorophyll content of different sesame (Sesamum indicum L.) cultivars. Intonational Journal of Pure and Applied Biosciences, 5(5), 1439-1444. https://dx.doi.org/10.18782/2320-7051.5794

Beheshti, A. R., & Fard, B. B. (2010). Dry matter accumulation and remobilization in grain sorghum genotypes (Sorghum bicolor L. Moench) under drought stress. Australian Journal of Crop Science, 4, 185-189.

Bennet, M. (2011). Sesame seed: A Handbook for Farmers and Investors. Retrieved from www.agmrc.org/media/cm/sesame_38F4324EE52CB.pdf

Bisht, I. S., Mahajan, R. K., Loknathan, T. R., & Agrawal, R. C. (1998). Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genetic Resources and Crop Evolution, 45(4), 325–335. https://doi.org/10.1023/A:1008652420477

Chen, S., Pang, X., Song, J., Shi, L., Yao, H., Han, J., & Leon, C. (2014). A renaissance in herbal medicine identification: from morphology to DNA. Biotechnology Advances, 32(7), 1237–1244. https://doi.org/10.1016/j.biotechadv.2014.07.004

Costa, F. T., Neto, S. M., Bloch Jr., C., & Franco, O. L. (2007). Susceptibility of human pathogenic bacteria to antimicrobial peptides from sesame kernels, Current Microbiology, 55(2), 162-166. https://doi.org/10.1007/s00284-007-0131-0

Ilorin Atlas (1982). Geography Department University Press, Ilorin, Nigeria. University Press, Ilorin, Nigeria.

Iqbal, A., Pati, P. K., Akhtar, R., Begum, T., & Dasgupta, T. (2018). Diversity in Sesame Accessions. International Journal of Agriculture, Environment and Biotechnology, 11(5), 725-731. https://doi.org/10.30954/0974-1712.10.2018.3

IPGRI & NBPGR. (2004). Descriptors for Sesame (Sesamum spp.), International Plant Genetic Resources Institute, Rome, Italy; and National Bureau of Plant Genetic Resources, New Delhi, India.

FAOSTAT (2011). Food and Agricultural Organization of the United Nations. Statistical Database. Retrieved from http://faostat.fao.org/

Food and Agriculture Organization Statistical Databases (FAOSTAT) (2015). FAOSTAT provides free access to food and agriculture data for over 245 countries and territories and covers all FAO regional groupings. Retrieved from http://faostat.fao.org

Frary, A., Tekin, P., Celik, I., Furat, S., Uzun, B., & Doganlar, S. (2015). Morphological and molecular diversity in Turkish sesame germplasm and core set selection, Crop Science, 55(2), 702–711. https://doi.org/10.2135/cropsci2014.01.0048

Furat, S., & Uzun, B. (2010). The use of agro-morphological characters for the assessment of genetic diversity in sesame (Sesamum indicum L.). Plant Omics Journal, 3(3), 85–91.

Kiranmayi, S. L., Roja, V., Padmalatha, K., Sivaraj, N. & Sivaramakrishnan, S. (2016). Genetic diversity analysis in sesame (Sesamum indicum) using morphological, biochemical and molecular techniques, International Journal of Applied Biology and Pharmaceutical Technology, 7(1), 17pp.

Langham, D. R., Riney, J., Smith, G., & Wiemers, T. (2008). Sesame growers guide, SESACO Corporation, Texas, 32pp.

Misganaw, M., Mekbib, F., Wakjira, A. (2015). Genotype x environment interaction on sesame (Sesamum indicum L.) seed yield. Academic Journals, 10(21), 2226–2239.

Myint, D., Gilani, S. A., Kawase, M., & Watanabe, K. N. (2020). Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability, 12, 3515 21. https://doi.org/10.3390/su12093515

Naturland (2002). Organic farming in the tropics and subtropics: Sesame. Available at www.naturland.de/Publication/English/sesame.pdf. Accessed 21st September, 2020.

Nigerian Metrological Agency (NIMET) (2018). Weather report for the year. Dec. 2018. Ilorin, Nigeria.

Ogbonna, P. E., & Ukaan, S. I. (2012). Yield evaluation of 13 sesame (Sesamum indicum L.) accessions in a derived savannah agro-ecology of south eastern Nigeria. African Journal of Agricultural Research, 6(43), 5772-5778. https://doi.org/10.5897/AJAR12.1083

Olaniran, O. J. (1988) The July-August Rainfall Anomaly in Nigeria. Climatologically Bulletin, 22(2), 26-38.

Olorunmaiye, K. S., Joseph, G. G., Animasaun, D. A., & Oyedeji, S. (2019) Mutagenic components and dosage effects of ethyl methane sulphonate on Arachis hypogea (SAMNUT 24 VR.). Ife Journal of Science, 21(2), 309-322. https://doi.org/10.4314/ijs.v21i2.5

Pandey, S. K., Das, A., Rai, P., & Dasgupta, T. (2015). Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiology and Molecular Biology of Plants, 21, 519-529. https://doi.org/10.1007/s12298-015-0322-2

Parameshwarappa, S.G., Palakshappa, M.G., Salimath, P.M. and Parameshwarappa, K.G. (2010). Analysis of genetic divergence in sesame, Sesamum indicum L. Karnataka Journal of Agricultural Sciences, 23(2), 227-230.

Pathak, N., Rai, A.K., Kumari, R., Thapa, A. and Bhat, K.V. (2014) Sesame Crop: An underexploited oilseed holds tremendous potential for enhanced food value. Agricultural Sciences, 5, 519-529. https://doi.org/10.4236/as.2014.56054

Payne R. W., Murray D. A., Harding S. A., Baird D. B., Soutar D. M., Lane P. (2007). GenStat for Windows, 10th Edition Introduction. Hertfordshire, UK: VSN International

Pham, T. D., Nguyen, T. D. T., Carlsson, A. S., & Bui, T. M. (2010). Morphological evaluation of sesame (Sesamum indicum L.) varieties from different origins. Australian Journal of Crop Science, 4(7), 498-499.

Porra, R. J., Tompson, W. J., & Kriedemann, P. E. (1989). Determination of accurate extinction co-efficient and simultaneous equation for assaying chlorophylls a and b extracted with four different solvent; verification of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0

Purseglove, J. W. (1977). Tropical Crops: Dicotyledons. Longman Group, London, Third Edition, London, 719p

Ram, R., Catlin, D., Romero, J., & Cowley, C. (1990) Sesame: new approaches for crop improvement. In: J. Janick & J. E. Simon (Eds), Advances in new crops. (pp 225-228). Portland. Timber Press.

Sabesan, T., Suresh, R., & Saravanan, K. (2009). Genetic variability and correlation for yield and grain quality characters of rice grown in coastal saline low land of Tamilnadu. Electronic Journal of Plant Breeding, 1, 56-59.

Sankar, D., Sambandam, G., Rao, M. R., & Pugalendi, K. V. (2005). Modulation of blood pressure, lipid profles and redox status in hypertensive patients taking different edible oils. Clinica Chimica Acta, 355(1-2), 97-104. https://doi.org/10.1016/j.cccn.2004.12.009

Sharmila, V., Ganesh, S. K., & Gunasekaran, M. (2007). Generation mean analysis for quantitative traits in sesame (Sesamum indicum L.) crosses. Genetics and Molecular Biology, 30(1), 80-84. https://doi.org/10.1590/S1415-47572007000100015

Suddihiyam, P., Steer, B. T., & Turner, D. W. (1992). The flowering of sesame (Sesamum indicum L.) in response to temperature and photoperiod. Australian Journal of Agricultural Research, 43, 1101-1116.

https://doi.org/10.1071/AR9921101

Upadhyay, P. V. K., Singh, C. N., & Neeraja, I. (2011). Identification of specific alleles and molecular diversity assessment of popular rice (Oryza sativa L.) varieties of India. International Journal of Plant Breeding and Genetic, 5, 130-140. https://doi.org/10.3923/ijpbg.2011.130.140

Tyagi, A. K., Sharma, M. K., Surya, M. S. K., Kerkhi, S. A., & Chand, P. (2014). Estimates of genetic variability, heritability and genetic advance in linseed (Linum usitatissinum L.) germplasm. Progressive Agriculture, 14(1), 37-48.

Yadav, A. K., Thakral, S. K., Hari, S., Phool, S., & Tadav, T. P. (1988). Effect of morpho-physiological attributes on PAR absorption and seed yield in sesame (Sesamum indicum L.). Journal of Oilseeds Research, 5, 155-158.

Yan, W., & Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11-20. https://doi.org/10.2135/cropsci2002.1100

Downloads

Published

4. 04. 2022

Issue

Section

Original Scientific Article

How to Cite

ANIMASAUN, D. A., OYEDEJI, S., MUSA, L. B., ADEDIBU, P. A., & ADEKOLA, O. F. (2022). Performance and genetic diversity of some sesame (Sesamum indicum L.) accessions based on morpho-agronomic traits and seed proximate composition in Kwara State of Nigeria. Acta Agriculturae Slovenica, 118(1), 1–15. https://doi.org/10.14720/aas.2022.118.1.1972