An example of the analysis of climate change in agriculture using Griffiths-Taylor diagrams

Authors

  • Tjaša POGAČAR Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Slovenija
  • Zoja GAŠPARIČ študent
  • Lučka KAJFEŽ BOGATAJ Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Slovenija
  • Zalika ČREPINŠEK Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Slovenija

DOI:

https://doi.org/10.14720/aas.2022.118.1.2282

Keywords:

climate change, Griffiths-Taylor diagram, air temperature, precipitation, relative humidity, fruit fly, sweet potato

Abstract

The climate clearly determines the characteristics of agriculture in terms of favourable conditions for the development of plants and animals. Climate change has a major impact on agriculture, and we need at least its analysis for past decades for effective adaptation. The annual scale of meteorological variables is quite rough, much more information is obtained from the monthly scale, for example when using bioclimatic indices and diagrams. Using Griffiths-Taylor diagrams, where each point shows the average monthly value of temperature and relative humidity or precipitation, we showed the change of 30-year averages (1961 to 2020) for six climate stations. Climate change can be seen from the shape of the diagram, an increase in average monthly air temperatures, a decrease in average relative humidity and changed precipitation patterns are visible. With the plot of favourable conditions for a certain plant / animal species, the diagram acquires ecological value. We have shown changes in the conditions for the development of the fruit fly (Ceratitis capitata (Wiedemann, 1824)) and the growth of sweet potatoes (Ipomoea batata L.). For the fruit fly, conditions improved due to higher temperatures, especially in colder locations. In Murska Sobota, which has the only suitable conditions for the growth of sweet potatoes, the period with favourable conditions is extended, in the last two periods in July and August, ideal conditions also appear. In further research, we recommend an analysis of weather-extreme years, which provides additional information on the variability of the conditions.

Author Biographies

  • Tjaša POGAČAR, Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Slovenija
    Oddelek za agronomijo
  • Zoja GAŠPARIČ, študent
    Student
  • Lučka KAJFEŽ BOGATAJ, Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Slovenija
    Oddelek za agronomijo
  • Zalika ČREPINŠEK, Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Slovenija
    Oddelek za agronomijo

References

Arnell, N.W., Freeman, A. (2021). The effect of climate change on agro-climatic indicators in the UK. Climatic Change, 165, 40. https://doi.org/10.1007/s10584-021-03054-8

ARSO. (2017). Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja: Povzetek temperaturnih in padavinskih povprečij. Pridobljeno s: OPS21_Porocilo.pdf (gov.si)

ARSO. (2021). Agencija republike Slovenije za okolje (ARSO), izpis meteoroloških podatkov iz baze podatkov za obdobje 1961-2020. Pridobljeno s: http://meteo.arso.gov.si/met/sl/climate

Badr, G., Hoogenboom, G., Abouali, M., Moyer, M., Keller, M. (2018). Analysis of several bioclimatic indices for viticultural zoning in the Pacific Northwest. Climate Research, 76, 203–223. https://doi.org/10.3354/cr01532

Belehu, T., Hammes, P.H. (2004). Effect of temperature, soil moisture content and type of cutting on establishment of sweet potato cuttings. South African Journal of Plant and Soil, 21, 85–89. https://doi.org/10.1080/02571862.2004.10635028

Bocci, M., Smanis, T. (2019). Assessment of the impacts of climate change on the agriculture sector in the southern Mediterranean: foreseen developments and policy measures. Union for the Mediterranean, 35 str. Pridobljeno s: https://ufmsecretariat.org/wp-content/uploads/2019/04/Climate-Change-impact-on-Agriculture.pdf

Brandenberger, L. P., Shrefler, J., Rebek, E. J., Damicone, J. (2014). Sweet potato production. Division of Agricultural Sciences and Natural Resources. Oklahoma Cooperative Extension Service HLA-6022: 1-8.

Ceglar, A., Zampieri, M., Toreti, A., Dentener, F. (2019). Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future, 7, 9, 1088-1101. https://doi.org/10.1029/2019EF001178

Christie, N. J. (1993). „Pioneering for a civilized world:“ Griffith Taylor and the ecology of geography. Scientia Canadensis, 17, 1-2, 103–154. https://doi.org/10.7202/800366ar

Egartner, A., Lethmayer, C., Gottsberger, R. A., Blümel, S. (2018). Monitoring activities on invasive fruit flies (Tephritidae, Diptera) in Austria. XI European Congress of Entomology Naples, Italy: 02-06 Jul. 2018, str. 153-154. https://doi.org/10.1055/s-0037-1606308

Gajanayake, B., Reddy, K., Shankle, M. (2015). Quantifying growth and developmental responses of sweetpotato to mid- and late-season temperature. Agronomy Journal, 107(5), 1854-1862. https://doi.org/10.2134/agronj14.05455

Gilioli, G., Sperandio, G., Colturato, M., Pasqualis, S., Gervasio, P., Wilstermann, A., Dominic, A.R., Schrader, G. (2021). Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biological Invasions, https://doi.org/10.1007/s10530-021-02639-9

Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical transactions of the Royal Society of London, Series B-Biological sciences, 365, 2973-2989. https://doi.org/10.1098/rstb.2010.0158

Karoglan, M., Telišman Prtenjak, M., Šimon, S. in sod. (2018). Clasification of Croatian winegrowing regions based on bioclimatic indices. E3S Web Conference, 50, 01032. https://doi.org/10.1051/e3sconf/20185001032

Kim, Y.C. (1961). Effects of thermoperiodism on tuber formation in Ipomoea batatas under controlled conditions. Plant Physiology, 36(5), 680-684. https://doi.org/10.1104/pp.36.5.680

Knox, J., Morris, J., Hess, T. (2010). Identifying future risks to UK agricultural crop production: Putting climate change in context. Outlook on Agriculture, 39( 4), 249-256. https://doi.org/10.5367/oa.2010.0016

Lencha, B., Birksew, A., Dikale, G. (2016). The evaluation of growth performance of sweet potato (Ipomoea batatas ‚Awassa‘) by using different type of vine cuttings. Food Science and Quality Management, 54, 55-65.

Loretan, P.A., Bonsi, C.K., Mortley, D.G., Wheeler, R.M., Mackowiak, C.L., Hill, W.A., David, P.A. (1994). Effects of several environmental factors on sweetpotato growth. Advances in Space Research, 14, 277–280. https://doi.org/10.1016/0273-1177(94)90308-5

Marshall, A. (1980). Griffith Taylor’s correlative science. Australian Geographical Studies, 18, 184– 193. https://doi.org/10.1111/j.1467-8470.1980.tb00367.x

Mu, T.H., Li, P.G. (2019). Sweet potato: origin and production. In Mu T.H., Singh, J. Sweet potato: Chemistry, Processing and Nutrition, Academic Press, 5-25. https://doi.org/10.1016/C2016-0-05204-X

Noce, S., Caporaso, L., Santini, M. (2020). A new global dataset of bioclimatic indicators. Scientific Data, 7, 398. https://doi.org/10.1038/s41597-020-00726-5

O’Brien, C. (2015). Governing climate: Griffith Taylor’s climographs and contemporary blind spots. Learning Communities, Special Issue: Objects of Governance, 15, 26-31. https://doi.org/10.18793/LCJ2015.15.05

Olesen, J.E., Carter, T.R., Díaz-Ambrona, C.H. in sod. (2007). Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81, 123-143. https://doi.org/10.1007/s10584-006-9216-1

Paneque Ramirez, G. (2021). Cultivation harvesting and storage of sweet potato products. Pridobljeno s: http://www.fao.org/3/T0554E/T0554E14.htm

Raymundo, R., Asseng, S., Cammarano, D., Quiroz, R. (2014). Potato, sweet potato, and yam models for climate change: a review. Field Crops Research, 166, 173–185. https://doi.org/10.1016/j.fcr.2014.06.017

Rivas-Martínez, S., Sáenz, S., Penas, A. (2011). Worldwide bioclimatic classification system. Global Geobotany, 1. 1-634+4 Maps, doi:10.5616/gg110001

Rot, M., Jančar, M., Bjeliš, M. (2015). Razširjenost breskove muhe - Ceratitis capitata Wiedemann na območju Slovenske in Hrvaške Istre. V: Izvlečki referatov 12. Slovenskega posvetovanja o varstvu rastlin z mednarodno udeležbo (ur. Trdan S.), Ptuj, 3.-4. marec 2015. Ljubljana, Društvo za varstvo rastlin Slovenije, 69-75.

Rusjan D., Koruza-Korošec Z. (2003). Mikrorajonizacija vinorodnega okoliša Goriška Brda. Zbornik Biotehniške Fakultete Univerze v Ljubljani, 81, 357–367.

Somasundaram, K., Mithra, V.S.S. (2008). Madhuram: A simulation model for sweet potato growth. World Journal of Agricultural Research, 4, 241–254.

Šlosár, M., Hegedusova, A., Hegedűs, O., Mezeyova, I., Timoracká, M. (2020). The effect of cultivar on selected quantitative and qualitative parameters of sweet potatoes (Ipomoea batatas L.) grown in Slovak republic. Journal of Central European Agriculture, 21, 344-353. https://doi.org/10.5513/JCEA01/21.2.2684

Tarman, K. (1992). Osnove ekologije in ekologija živali. Ljubljana, Državna založba Slovenije, 547 str.

Taylor Griffith, T. (2021). Professor Griffith Taylor collection, between 1900 and 1960. Pridobljeno s: http://nla.gov.au/nla.obj-149708712

Valenzuela, H., Fukuda, S., Arakaki, A. (2020). Sweetpotato Production Guides for Hawaii. Pridobljeno s: http://www2.hawaii.edu/~hector/prod%20guides%20fold/swpotato.html

Villordon, A., Clark, C., Ferrin, D., LaBonte, D. (2009). Using growing degree days, agrometeorological variables, linear regression, and data mining methods to help improve prediction of sweetpotato harvest date in Louisiana. HortTechnology, 19, 133-144. https://doi.org/10.21273/HORTSCI.19.1.133

Winlow, H. (2009). Mapping the contours of race: Griffith Taylor’s zones and strata theory, Geographical research, 47, 4, 390-407. https://doi.org/10.1111/j.1745-5871.2009.00604.x

Žežlina, J. (2018). Pojavljanje breskove muhe (Ceratitis capitata [Wiedemann], Diptera, Tephritidae) na kakiju (Diospyros kaki L.) na štirih lokacijah na Primorskem. Magistrsko delo. Ljubljana, Biotehniška fakulteta, Oddelek za agronomijo: 51 str.

Published

4. 04. 2022

Issue

Section

Original Scientific Article

How to Cite

POGAČAR, T., GAŠPARIČ, Z., KAJFEŽ BOGATAJ, L., & ČREPINŠEK, Z. (2022). An example of the analysis of climate change in agriculture using Griffiths-Taylor diagrams. Acta Agriculturae Slovenica, 118(1), 1–12. https://doi.org/10.14720/aas.2022.118.1.2282

Similar Articles

1-10 of 416

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>