Effects of γ-radiation on chickpea (Cicer arietinum) varieties and their tolerance to salinity stress


  • Amal Abdel-Nasser ABDOUN Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
  • Laila MEKKI Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
  • Aladdin HAMWIEH International Center for Agriculture Research in Dry Land (ICARDA), Aleppo, Syria
  • Abdelfattah BADR Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt




chickpea, γ-radiation, germination, mitotic index, chromosomal aberrations


Chickpea (Cicer arietinum L.) is a bisexual and self-pollinated legume. It improves the soil fertility through its natural ability to fix atmospheric nitrogen with its symbiotic bacteria. Salinity is one of the most important abiotic stress factors affecting plant growth. γ-radiation is a very effective tool for inducing mutations in many plants. This study evaluated the γ-radiation effect on germination, cell division and plant growth of first-generation plants. Seeds of seven chickpea varieties were irradiated with γ-radiation doses ranging between 50 Gy and 600 Gy. Non-significant differences in germination percentage were recorded for seeds exposed to 50 Gy, 100 Gy, and 200 Gy of γ-radiation in comparison to the corresponding controls except ILC 484. The mitotic index (MI) of root cells increased at the low doses of 50 Gy, 100 Gy and 200 Gy comparing and reduced at the higher doses in all chickpea varieties to the control. All doses of γ-radiation induced a variable range of chromosomal abnormalities; the most common were bridges, laggard chromosomes, stickiness at metaphase, chromosome breaks, micronuclei and binucleate cells. The 300 Gy to 600 Gy doses induced degradation of nuclear membranes. The salinity treatments at 25 mM NaCl and 60 mM NaCl reduced seedling’s growth of all cultivars. The dose of 100 Gy alleviated the impact of salinity at a concentration of 25 mM NaCl for all varieties, except FLIP 84-188 and FLIP 97-263. The 60 mM NaCl treatment significantly reduced early growth of all cultivars and its effect was not alleviated by the γ-radiation.

Author Biographies

  • Amal Abdel-Nasser ABDOUN, Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
    Botany and Microbiology department
  • Laila MEKKI, Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
    Botany and Microbiology department


Amri-Tiliouine, W., Laouar, M., Abdelguerfi, A., Jankowicz-Cieslak, J., Jankuloski, L., & Till, B. J. (2018). Genetic variability induced by gamma rays and preliminary results of low-cost TILLING on M2 generation of Chickpea (Cicer arietinum L.). Frontiers in Plant Science, 9, 1568. Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2018.01568/full

Arian, A., & Maqbool, A. F. (2011). Gross mutations and oxidative damages induced by high doses of gamma rays in chickpea (Cicer arietinum L.) root tip cells. Institute of Plant Sciences, University of Sindh, Jamshoro, 16-20

Badr, A. (1986). Effects of the s-triazine herbicide turbutryn on mitosis, chromosomes and nucleic acids in root tips of Vicia faba. Cytologia, 51(3), 571-577. Retrieved from https://www.jstage.jst.go.jp/article/cytologia1929/51/3/51_3_571/_article/-char/ja/

Badr, A., El-Shazly, H. H., & Halawa, M. (2014). Cytological effects of gamma radiation and its impact on growth and yield of M1 and M2 Plants of Cowpea Cultivars. Cytologia, 79(2), 195-206. Retrieved from https://www.jstage.jst.go.jp/article/cytologia/79/2/79_195/_article/-char/ja/

Bhat, T. A., & Wani, A. A. (2017). Chromosome structure and aberrations: Springer. https://doi.org/10.1007/978-81-322-3673-3

Brahmi, I., Mabrouk, Y., Charaabi, K., Delavault, P., Simier, P., & Belhadj, O. (2014). Induced mutagenesis through gamma radiation in chickpea (Cicer arietinum L.): developmental changes and improved resistance to the parasitic weed Orobanche foetida Poir. International Journal, 2(11), 670-684. Retrieved from https://www.researchgate.net/profile/Yassine-Mabrouk-2/publication/271705368_

Chopra, V. (2005). Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Science, 353-359. Retrieved from https://www.jstor.org/stable/24110583

Cornforth, M., & Goodwin, E. (1991). Transmission of radiation-induced acentric chromosomal fragments to micronuclei in normal human fibroblasts. Radiation Research, 126(2), 210-217. Retrieved from https://meridian.allenpress.com/radiation-research/article-abstract/126/2/210/39242/Transmission-of-Radiation-Induced-Acentric

De Veylder, L., Joubès, J., & Inzé, D. (2003). Plant cell cycle transitions. Current Opinion in Plant Biology, 6(6), 536-543. Retrieved from De Veylder, L., Joubès, J., & Inzé, D. (2003). Plant cell cycle transitions. Current opinion in plant biology, 6(6), 536-543. https://doi.org/10.1016/j.pbi.2003.09.001

Dhanavel, D., Gnanamurthy, S., & Girija, M. (2012). Effect of gamma rays on induced chromosomal variation in cowpea Vigna unguiculata (L.) Walp. International Journal of Current Science, 2012, 245-250.

El-Azab, E. M., Ahmed Soliman, M., Soliman, E., & Badr, A. (2018). Cytogenetic impact of gamma irradiation and its effects on growth and yield of three soybean cultivars. Egyptian Journal of Botany, 58(3), 411-422. Retrieved from https://journals.ekb.eg/article_7900.html

Feher, A., Ötvös, K., Pasternak, T. P., & Pettkó-Szandtner, A. (2008). The involvement of reactive oxygen species (ROS) in the cell cycle activation (G0-to-G1 transition) of plant cells. Plant Signaling & Behavior, 3(10), 823-826. https://doi.org/10.4161/psb.3.10.5908

Gaafar, R. M., Hamouda, M., & Badr, A. (2016). Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line. Journal of Genetic Engineering and Biotechnology, 14(1), 61-68. Retrieved from https://www.sciencedirect.com/science/article/pii/S1687157X15000669

Girija, M., Gnanamurthy, S., & Dhanavel, D. (2013). Cytogenetics effect of gamma rays on root meristem cells of Vigna unguiculata (L.). European Journal of Experimental Biology, 3(2), 38-41. Retrieved from https://www.researchgate.net/profile/D-Dhanavel/publication/333260847_Cytogenetics_effect_of_gamma_rays_on_root_meristem_cells_of_Vigna_unguiculata_L/links/5ce4dd0d458515712eba7214/Cytogenetics-effect-of-gamma-rays-on-root-meristem-cells-of-Vigna-unguiculata-L.pdf

Gnanamurthy, S., Mariyammal, S., Dhanavel, D., & Bharathi, T. (2012). Effect of gamma rays on yield and yield components characters R3 generation in cowpea (Vigna unguiculata (L.). Walp.). International Journal of Plant Science, 2(2), 39-42.

Grant, W. F. (1978). Chromosome aberrations in plants as a monitoring system. Environmental Health Perspectives, 27, 37-43. Retrieved from https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.782737

Haleem, M. A. (2012). Pre-exposure to gamma rays alleviates the harmful effect of salinity on cowpea plants. Journal of Stress Physiology & Biochemistry, 8(4). Retrieved from https://cyberleninka.ru/article/n/pre-exposure-to-gamma-rays-alleviates-the-harmful-effect-of-salinity-on-cowpea-plants

Hartig, K., & Beck, E. (2006). Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biology, 8(03), 389-396. Retrieved from https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2006-923797

Jimenez-Lopez, J. C., Singh, K. B., Clemente, A., Nelson, M. N., Ochatt, S., & Smith, P. (2020). Legumes for global food security. Frontiers in Plant Science, 11, 926. Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2020.00926/full

Joshi-Saha, A., Reddy, K. S., Petwal, V., & Dwivedi, J. (2015). Identification of novel mutants through electron beam and gamma irradiation in chickpea (Cicer arietinum L.). Journal of Food Legumes, 28(2), 1-6.

Jukanti, A. K., Gaur, P. M., Gowda, C., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(S1), S11-S26. Retrieved from https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/nutritional-quality-and-health-benefits-of-chickpea-cicer-arietinum-la-review/BCD8920297E987AAABBC12BFF90EB0CF

Kabeche, L., Nguyen, H. D., Buisson, R., & Zou, L. (2018). A mitosis-specific and R loop–driven ATR pathway promotes faithful chromosome segregation. Science, 359(6371), 108-114. Retrieved from https://www.science.org/doi/abs/10.1126/science.aan6490

Kamble, G., & Patil, A. (2014). Comparative mutagenicity of EMS and gamma radiation in wild chickpea. International Journal of Science and Technology, 3, 166-180. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=

Katerji, N., Van Hoorn, J., Hamdy, A., Mastrorilli, M., & Oweis, T. (2005). Salt tolerance analysis of chickpea, faba bean and durum wheat varieties: I. Chickpea and faba bean. Agricultural Water Management, 72(3), 177-194. Retrieved from https://www.sciencedirect.com/science/article/pii/S037837740400229X?casa_token=oeBq20KUQHMAAAAA:j0l_JkGs5I8-sr6ALn-R6e4YCB3y6jhNtNkK_eBgJFftC4JM8Jk4BtDwP2sSrSDuPuAKdijgsg

Kaydan, D., & Yagmur, M. (2008). Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCI. African Journal of Biotechnology, 7.

Khan, H. A., Siddique, K. H., Munir, R., & Colmer, T. D. (2015). Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of Plant Physiology, 182, 1-12. https://doi.org/10.1016/j.jplph.2015.05.002

Kim, J.-S., Lee, E.-K., Back, M.-H., Kim, D.-H., & Lee, Y.-B. (2000). Influence of low dose ${gamma} $ radiation on the physiology of germinative seed of vegetable crops. Korean Journal of Environmental Agriculture, 19(1), 58-61. Retrieved from https://www.koreascience.or.kr/article/JAKO200019756103350.page

Koteles, G. (1996). The human lymphocyte micronucleus assay. A review on its applicabilities in occupational and environmental medicine. Central European Journal of Occupational and Environmenta Medicine, 2, 12-30.

Köteles, G., Bojtor, I., Szirmai, S., Berces, J., & Otos, M. (1993). Micronucleus frequency in cultured lymphocytes of an urban population. Mutation Research/Genetic Toxicology, 319(4), 267-271. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/0165121893900145

Kumar, S. (1998). Effect of gamma rays, EMS, DES on meiosis in Lathyrus sativus. Journal of. Cytology, 33, 139-147. Retrieved from https://ci.nii.ac.jp/naid/10019329359/

Ladizinsky, G., & Adler, A. (1976). The origin of chickpea Cicer arietinum L. Euphytica, 25(1), 211-217. Retrieved from https://link.springer.com/article/10.1007/BF00041547

Marques, E., Krieg, C. P., Dacosta-Calheiros, E., Bueno, E., Sessa, E., Penmetsa, R. V., & von Wettberg, E. (2020). The impact of domestication on aboveground and belowground trait responses to nitrogen fertilization in wild and cultivated genotypes of Chickpea (Cicer sp.). Frontiers in Genetics, 11. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738563/

Melki, M., Mhamdi, M., & Achouri, A. (2011). Chickpea response to low doses of gamma radiation. Russian Agricultural Sciences, 37(4), 318-321. Retrieved from https://link.springer.com/article/10.3103/S1068367411040136

Melki, M., & Sallami, D. (2008). Studies the effects of low dose of gamma rays on the behaviour of chickpea under various conditions. Pakistan Journal of Biological Sciences: PJBS, 11(19), 2326-2330. Retrieved from https://europepmc.org/article/med/19137865

Moreno, M.-T., & Cubero, J. (1978). Variation in Cicer arietinum L. Euphytica, 27(2), 465-485. Retrieved from https://link.springer.com/article/10.1007/BF00043173

Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla, B. J., . . . Foster, K. J. (2020). Energy costs of salt tolerance in crop plants. New Phytologist, 225(3), 1072-1090. Retrieved from https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15864

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? New Phytologist, 208(3), 668-673. Retrieved from https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13519

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. Retrieved from https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.59.032607.092911

Nazarenko, M., & Izhboldin, O. (2017). Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells. Biosystems Diversity, 25(1). Retrieved from https://cyberleninka.ru/article/n/chromosomal-rearrangements-caused-by-gamma-irradiation-in-winter-wheat-cells

Piskadlo, E., Tavares, A., & Oliveira, R. A. (2017). Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de) catenation. Elife, 6, e26120. Retrieved from https://elifesciences.org/articles/26120

Preuss, S. B., & Britt, A. B. (2003). A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164(1), 323-334. https://doi.org/10.1093/genetics/164.1.323

Rao, D., Giller, K., Yeo, A., & Flowers, T. (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Annals of Botany, 89(5), 563-570. Retrieved from https://academic.oup.com/aob/article/89/5/563/205764?login=true

Sadiki, M., & Rabih, K. (2001). Selection of chickpea (Cicer arietinum) for yield and symbiotic nitrogen fixation ability under salt stress. Agronomie, 21(6-7), 659-666. Retrieved from https://hal.archives-ouvertes.fr/hal-00886149/

Scofield, S., Jones, A., & Murray, J. A. (2014). The plant cell cycle in context. Journal of Experimental Botany, 65(10), 2557-2562. https://doi.org/10.1093/jxb/eru188

Shah, T. M., Mirza, J. I., Haq, M. A., & Atta, B. M. (2008). Radio sensitivity of various chickpea genotypes in M1 generation I-Laboratory studies. Pakistan Journal of Botany, 40(2), 649-665. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/34204731/PJB402649-with-cover-page-v2.pdf?Expires=1643712109&Signature=f5dIrLXLvrmC1FqJRo6dTeC2-ZmygN6JXGkcojuRo~dpFt7zlbRhX7Z9SsozJPKgbdWosm2taOcu-qOE-mkspI8m43bgeg7dLy2lJa8iR10-WXnTWGl2Ybgrop6-hFvb69ApyTNjRU7sDXISUaYDB680jDHwveI0Vkwpg3DQJYBrtFnl9mw-3ajxo1th0WX8L8b6RRWivH70gMbbpQeUVjX~hrwvAJ1iakk4QkO4Hdad02gfxNGNEXs6mEaRMD-tNnMg50addU8xRJ-K8GJjXyFgbxdesLuOO22eLcaze2oQkl-yZyBfu1nae4IPj96T1Zoiy041pH7sMxCdPqLz3Q__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215-225. https://doi.org/10.1016/j.crvi.2008.01.002

Sharma, P., Jha, A. á., Dubey, R. S., & PessarakliM, R. O. S. (2012). Oxidative damage and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26. Retrieved from https://downloads.hindawi.com/archive/2012/217037.pdf

Singh, B. D. (2005). Mutations in crop improvement. In: Singh, B. D. (ed). Plant Breeding, Principles and Methods. Kalyani Publishers, Ludhiana, , pp. 698–731.

Sohrabi, Y., Heidari, G., & Esmailpoor, B. (2008). Effect of salinity on growth and yield of Desi and Kabuli chickpea cultivars. Pakistan Journal of Biological Sciences: PJBS, 11(4), 664-667. Retrieved from https://europepmc.org/article/med/18817146

Soliman, M., Elkelish, A., Souad, T., Alhaithloul, H., & Farooq, M. (2020). Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiology and Molecular Biology of Plants, 26(3), 501-511. Retrieved from https://link.springer.com/article/10.1007/s12298-020-00765-7

Sun, Z., Li, H., Zhang, Y., Li, Z., Ke, H., Wu, L., . . . Ma, Z. (2018). Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 9, 1011. Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2018.01011/full

Tabur, S., Avci, Z. D., & Özmen, S. (2021). Exogenous salicylic acid application against mitodepressive and clastogenic effects induced by salt stress in barley apical meristems. Biologia, 76(1), 341-350. Retrieved from https://link.springer.com/article/10.2478/s11756-020-00573-0

Toker, C., Uzun, B., Canci, H., & Ceylan, F. O. (2005). Effects of gamma irradiation on the shoot length of Cicer seeds. Radiation Physics and Chemistry, 73(6), 365-367. Retrieved from https://www.sciencedirect.com/science/article/pii/S0969806X05000721?casa_token=yH7l1OTA-dUAAAAA:kR_9_MCIoPSbud0WjplZ2Wz6ovsPEjNNS7NSt9CYiBjUVAd8iujrB92hNmZ8zfzSnxzZshRzcA

Tshilenge-Lukanda, L., Kalonji-Mbuyi, A., Nkongolo, K., & Kizungu, R. (2013). Effect of gamma irradiation on morpho-agronomic characteristics of groundnut (Arachis hypogaea L.). American Journal of Plant Sciences, 4(11), 2186. Retrieved from https://www.scirp.org/html/39582.html

Upadhyaya, H. D., Dwivedi, S. L., Baum, M., Varshney, R. K., Udupa, S. M., Gowda, C. L., . . . Singh, S. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biology, 8(1), 1-12. Retrieved from https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-8-106

Van der Maesen, L. J. G. (1972). Cicer L., A Monograph of the Genus, with Special References to Chickpea (Cicer arietinum L.). Its ecology and cultivation. Mededlingen landbouw hogeschool (Communication Agricultural University), Wageningen.

Wani, A. A. (2009). Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatments in chickpea (Cicer arietinum L.). Asian Journal of Plant Sciences, 8(4), 318-321. https://doi.org/10.3923/ajps.2009.318.321

Waters, M. D., & Auletta, A. (1981). The GENE-TOX program: genetic activity evaluation. Jornal of Chemical Information and Computer Science, 21(1), 35-38. https://doi.org/10.1021/ci00029a007


Additional Files


8. 07. 2022



Original Scientific Article

How to Cite

ABDOUN, A. A.-N., MEKKI, L., HAMWIEH, A., & BADR, A. (2022). Effects of γ-radiation on chickpea (Cicer arietinum) varieties and their tolerance to salinity stress. Acta Agriculturae Slovenica, 118(2), 1–16. https://doi.org/10.14720/aas.2022.118.2.2538

Similar Articles

1-10 of 178

You may also start an advanced similarity search for this article.