Seed priming with ZNPs reduced expression of salinity tolerance genes in Glycine max L. and improved yield traits
DOI:
https://doi.org/10.14720/aas.2022.118.3.2529Keywords:
ZnO, nanoparticles, salinity, soybean, gene expression, qRT-PCR, productivityAbstract
Little has been done to evaluate the molecular role of ZnO nanoparticles (ZNPs) in regulating biochemical processes and plant yield in response to salt-induced stress. In this study, the molecular response of salt-stressed soybean (‘Giza111’) was assessed under different concentrations of ZNPs (25, 50, 100, and 200 mg l-1) by measuring some osmolytes, yield parameters, and Na+ and K+ content. The impact of salinity on the mRNA expression levels of three key salt-tolerance related genes (GmCHX1, GmPAP3, and GmSALT3) using qRT-PCR was also determined. The high level of salinity (250 mM NaCl) led to a significant increase in Na+ content, total soluble proteins, and total soluble carbohydrates and significantly upregulated gene expression of GmCHX1, GmPAP3, and GmSALT3, while reducing K+ content, K+/Na+ ratio and all yield parameters compared to control plants. Soaking soybean seeds in various ZNP concentrations, on the other hand, increased K+ content and K+/Na+ ratio while decreasing Na+ content, total soluble proteins, and total soluble carbohydrates in stressed plants, particularly at 50 mg l-1 ZNPs. Furthermore, GmCHX1, GmPAP3, and GmSALT3 expressions were all downregulated at 50 mg l-1 ZNPs, which ultimately improved soybean yield parameters. Accordingly, these results recommend the application of 50 mg l-1 ZNPs for improving the productivity of soybean cultivated in saline soils.
References
Abdel Latef, A. A., Alhmad, M. F. A. and Abdelfattah, K. E. (2017). The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. Journal of Plant Growth Regulation, 36, 60-70. https://doi.org/10.1007/s00344-016-9618-x
Abreu, I. A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M. and Oliveira, M. M. (2013). Coping with abiotic stress: proteome changes for crop improvement. Journal of Proteomics, 93, 145-168. https://doi.org/10.1016/j.jprot.2013.07.014
Ahanger, M. A., Tomar, N. S., Tittal, M., Argal, S. and Agarwal, R. M. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23(4), 731-744. https://doi.org/10.1007/s12298-017-0462-7
Albert, I.L.; Nadassy, K.; Wodak, S.J. (1998). Analysis of zinc binding sites in protein crystal structures. Protein Science, 7, 1700-1716. https://doi.org/10.1002/pro.5560070805
Alharby, H. F., Metwali, E. M., Fuller, M. P. and Aldhebiani, A. Y. (2016). The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill.,) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences, 23(6), 773-781. https://doi.org/10.1016/j.sjbs.2016.04.012
Ali, E. A. and Mahmoud, A. M. (2013). Effect of foliar spray by different salicylic acid and zinc concentration on seed yield components of mungbean in sandy soil. Asian Journal of Crop Science, 5(1), 33-40. https://doi.org/10.3923/ajcs.2013.33.40
Allen, S.G., Girmshaw, H.M., Parkinson, J.A. and Quarmby, C. (1974). Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford, London, 565.
Almutairi, Z. M. T. (2019). Plant molecular defense mechanisms promoted by nanoparticles against environmental stress. International Journal of Agriculture and Biology, 21, 259-270.
Bishop, O. N. (1983). Statistics in biology. Longman Penguin London, 56-63.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cao, Y., Liang, X., Yin, P., Zhang, M. and Jiang, C. (2019). A domestication‐associated reduction in K+‐preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist, 222(1), 301-317. https://doi.org/10.1111/nph.15605
Cardoso, K. P. S., Conceição, S. S. and de Araújo Brito, A. E. (2019). Biochemical metabolism of two cultivars of cowpea treated with 24-Epibrassinolide and subjected to saline stress. Australian Journal of Crop Science, 13(3), 444. https://doi.org/10.21475/ajcs.19.13.03.p1390
Chakraborty, K., Basak, N., Bhaduri, D., Ray, S., Vijayan, J., Chattopadhyay, K. and Sarkar, R. K. (2018). “Ionic basis of salt tolerance in plants: Nutritional homeostasis and oxidative stress tolerance,” in Plant Nutrients and Abiotic Stress Tolerance, eds M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (Berlin: Springer), 325-362. https://doi.org/10.1007/978-981-10-9044-8_14
Chanroj, S., Lu, Y., Padmanaban, S., Nanatani, K., Uozumi, N., Rao, R., et al.(2011) Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. Journal of Biological Chemistry, 286, 33931-33941. https://doi.org/10.1074/jbc.M111.252650
Chen, C., Yu, Y., Ding, X., Liu, B., Duanmu, H., Zhu, D. and Zhu, Y. (2018). Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. Protoplasma, 255(2), 643-654. https://doi.org/10.1007/s00709-017-1172-2
Chen, H. and Jiang, J. G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18, 309-319. https://doi.org/10.1139/A10-014
Chen, K. I., Erh, M. H., Su, N. W., Liu, W. H., Chou, C. C. and Cheng, K. C. (2012). Soy foods and soybean products: from traditional use to modern applications. Applied microbiology and biotechnology, 96(1), 9-22. https://doi.org/10.1007/s00253-012-4330-7
Chinnusamy, V., Jagendorf, A. and Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437-448. https://doi.org/10.2135/cropsci2005.0437
Choudhury, F. K., Rivero, R. M., Blumwald, E. and Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. https://doi.org/10.1111/tpj.13299
Dang, Z. H., Qi, Q., Zhang, H. R., Li, H. Y., Wu, S. B. and Wang, Y. C. (2014). Identification of salt-stress-induced genes from the RNA-Sequencing data of Reaumuria trigyna using differential-display reverse transcription PCR. International Journal of Genomics, 1-7. https://doi.org/10.1155/2014/381501
Dewdar, M., Abbas, M., Hassanin, A. and Aleem, H. (2018). Effect of nano micronutrients and nitrogen foliar applications on sugar beet (Beta vulgaris L.) of quantity and quality traits in marginal soils in Egypt. International Journal of Current Microbiology and Applied Sciences, 7(8), 4490-4498. https://doi.org/10.20546/ijcmas.2018.708.475
Diédhiou, C. J., Popova, O. V., Dietz, K. J. and Golldack, D. (2008). The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. Biomed Central Plant Biology, 8(1), 1-13. https://doi.org/10.1186/1471-2229-8-49
Dimkpa, C. O. and Bindraban, P. S. (2016). Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 36(1), 7. https://doi.org/10.1007/s13593-015-0346-6
Do, T. D., Chen, H., Hien, V. T. T., Hamwieh, A., Yamada, T., Sato, T. and Xu, D. (2016). Ncl synchronously regulates Na+, K+, and Cl− in soybean and greatly increases the grain yield in saline field conditions. Scientific Reports, 6, 1-10. https://doi.org/10.1038/srep19147
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
El-Mashad, A. A. and Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625-635. https://doi.org/10.1007/s00709-011-0300-7
El-Shaer, A., Abdelfatah, M., Basuni, A. and Mosaad, M. (2018). Effect of KOH molarity and annealing temperature on ZnO nanostructure properties. Chinese Journal of Physics, 56(3), 1001-1009. https://doi.org/10.1016/j.cjph.2018.03.015
Farhangi-Abriz, S. and Torabian, S. (2018). Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255(3), 953-962. https://doi.org/10.1007/s00709-017-1202-0
Fatima, U., Khan, M. F., Fatima, J., Shahab, U., Ahmad, S. and Yusuf, M. A. (2017). DNA damage, response, and repair in plants under genotoxic stress: stress signaling in plants. Genomics and Proteomics Perspective, 2, 151-171. https://doi.org/10.1007/978-3-319-42183-4_7
Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G. and Bartolucci, C. (2016). Nanotechnology in agriculture. Frontiers in Environmental Science, 4, 20. https://doi.org/10.3389/fenvs.2016.00020
Francisca, L. W. Y. (2005). Characterization and Functional Studies of GmPAP3, a Novel Purple Acid Phosphatase-like Gene in Soybean Induced by NaCl Stress but not Phosphorus Deficiency (Doctoral dissertation, The Chinese University of Hong Kong).
Gaafar R.M., Diab R., Halawa M., Elshanshory A., El-Shaer A., Hamouda A. (2020). Role of zinc oxide nanoparticles in ameliorating salt tolerance in soybean. Egyptian Journal of Botany, 60(3), 733-747. https://doi.org/10.21608/ejbo.2020.26415.1475
Guan, R., Chen, J., Jiang, J., Liu, G., Liu, Y., Tian, L. and Qiu, L. J. (2014). Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. The Crop Journal, 2(6), 358-365. https://doi.org/10.1016/j.cj.2014.09.001
Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N. and Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. https://doi.org/10.1016/j.envexpbot.2019.03.022
Haliloglu, K., Hosseinpour, A., Cinisli, K. T., Ozturk, H. I., Ozkan, G., Pour-Aboughadareh, A. and Poczai, P. (2020). Investigation of the protective roles of zinc oxide nanoparticles and plant growth promoting bacteria on DNA damage and methylation in tomato (Solanum lycopersicum L.) under salinity stress. Horticulture Environment and Biotechnology. 7(2), 23-41.
Han, G., Yuan, F., Guo, J., Zhang, Y., Sui, N. and Wang, B. (2019). AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Science, 285, 55-67. https://doi.org/10.1016/j.plantsci.2019.05.002
Hauser, F. and Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell and Environment, 33(4), 552-565. https://doi.org/10.1111/j.1365-3040.2009.02056.x
He, X. C., Lin, M., Li, F., Sha, B. Y., Xu, F., Qu, Z. G. and Wang, L. (2015). Advances in studies of nanoparticle-biomembrane interactions. Nanomedicine, 10(1), 121-141. https://doi.org/10.2217/nnm.14.167
Hezaveh, T. A., Pourakbar, L., Rahmani, F. and Alipour, H. (2019). Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Communications in Soil Science and Plant Analysis, 50(6), 698-715. https://doi.org/10.1080/00103624.2019.1589481
Jonak, C., Ökrész, L., Bögre, L. and Hirt, H. (2002). Complexity, cross talk and integration of plant MAP kinase signaling. Current Opinion in Plant Biology, 5(5), 415-424. https://doi.org/10.1016/S1369-5266(02)00285-6
Karimi, R., Mohammadparast, B. and Minazadeh, R. (2019). Phytochemical responses and antioxidant activity of potassium-treated grapevines (Vitis vinifera L.) in salinity stress condition. Journal of Plant Process and Function, 245-260.
Kasim, W. A. E. A., AboKassem, E. M. and Ragab, G. A. A. (2017). Ameliorative effect of yeast extract, IAA and green-synthesized nano zinc oxide on the growth of Cu-stressed Vicia faba seedlings. Egyptian Journal of Botany, 1-16. https://doi.org/10.21608/ejbo.2017.885.1065
Khan, M. S. A., Karim, M. A., Haque, M. M., Karim, A. J. M. S. and Mian, M. A. K. (2017). Effect of salt and water stress on gas exchange, dry matter production and K+/Na+ ions selectivity in soybean. Bangladesh Journal of Agricultural Research, 42(3), 487-501. https://doi.org/10.3329/bjar.v42i3.34507
Landa, P., Prerostova, S., Petrova, S., Knirsch, V., Vankova, R. and Vanek, T. (2015). The transcriptomic response of Arabidopsis thaliana to zinc oxide: A comparison of the impact of nanoparticle, bulk, and ionic zinc. Environmental Science and Technology, 49(24), 14537-14545. https://doi.org/10.1021/acs.est.5b03330
Li, C., Fang, G., Li, J., Ai, L., Dong, B. and Zhao, X. (2008a). Effect of seed layer on structural properties of ZnO nanorod arrays grown by vapor-phase transport. The Journal of Physical Chemistry C, 112(4), 990-995. https://doi.org/10.1021/jp077133s
Li, W. Y. F., Shao, G. and Lam, H. M. (2008b). Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. New Phytologist, 178(1), 80-91. https://doi.org/10.1111/j.1469-8137.2007.02356.x
Liao, H., Wong, F. L., Phang, T. H., Cheung, M. Y., Li, W. Y. F., Shao, G. and Lam, H. M. (2003). GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 318, 103-111. https://doi.org/10.1016/S0378-1119(03)00764-9
Liao, Y., Zou, H. F., Wang, H. W., Zhang, W. K., Ma, B., Zhang, J. S. and Chen, S. Y. (2008). Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Research, 18(10), 1047-1060. https://doi.org/10.1038/cr.2008.280
Linh TM, Mai NC, Hoe PT, Lien LQ, Ban NK, Hien LTT, Chau NH, Van NT. (2020). Metal-based nanoparticles enhance drought tolerance in soybean. Journal of Nanomaterials, 1-13. https://doi.org/10.1155/2020/4056563
Liu, H. R., Sun, G. W., Dong, L. J., Yang, L. Q., Yu, S. N., Zhang, S. L. and Liu, J. F. (2017). Physiological and molecular responses to drought and salinity in soybean. The Plant Biology, 61(3), 557-564. https://doi.org/10.1007/s10535-017-0703-1
Liu, X., Wang, F., Shi, Z., Tong R., Shi X. (2015).Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. Journal of Nanoparticle Research, 17, 175. https://doi.org/10.1007/s11051-015-2989-2
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2− ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Maathuis, F. J., Ahmad, I. and Patishtan, J. (2014). Regulation of Na+ fluxes in plants. Frontiers in Plant Science,5, 1-9. https://doi.org/10.3389/fpls.2014.00467
Mathur, S., Raikalal, P. and Jajoo, A. (2019). Physiological responses of wheat to environmental stresses. Wheat Production in Changing Environments, 31-61. https://doi.org/10.1007/978-981-13-6883-7_2
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
Møller, I. S., Gilliham, M., Jha, D., Mayo, G. M., Roy, S. J., Coates, J. C. and Tester, M. (2009). Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. The Plant Cell, 21(7), 2163-2178. https://doi.org/10.1105/tpc.108.064568
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-8. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C. and Plett, D. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30(4), 360-364. https://doi.org/10.1038/nbt.2120
Naguib, M. I., Youssef, E. and Kinawy, M. M. (1968). Effect of kinetin on the nitrogen metabolism of radish plants. Bulletin of The Faculty of Science, Cairo University, 42, 13-22.
Olczak, M., Morawiecka, B. and Watorek, W. (2003). Plant purple acid phosphatases genes, structures and biological function. Acta Biochimica Polonica, 50, 1245-1256. https://doi.org/10.18388/abp.2003_3648
Padmanaban, S., Chanroj, S., Kwak, J. M., Li, X., Ward, J. M. and Sze, H. (2007). Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiology, 144(1), 82-93. https://doi.org/10.1104/pp.106.092155
Pardo, J. M., Cubero, B., Leidi, E. O. and Quintero, F. J. (2006). Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 57(5), 1181-1199. https://doi.org/10.1093/jxb/erj114
Patil, G., Do, T., Vuong, T. D., Valliyodan, B., Lee, J. D., Chaudhary, J. and Nguyen, H. T. (2016). Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep19199
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J. and Noble, A. D. (2014). Economics of salt‐induced land degradation and restoration. Natural Resources Forum, 38(4), 282-295. https://doi.org/10.1111/1477-8947.12054
Qi, X., Li, M. W., Xie, M., Liu, X., Ni, M., Shao, G., Song, C., and Yim, K.Y. (2014). Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 5, 4340. https://doi.org/10.1038/ncomms5340
Qu, Y., Guan, R., Bose, J., Henderson, S. W., Wege, S., Qiu, L. J. and Gilliham, M. (2020). GmSALT3 confers shoot Na+ and Cl− exclusion in soybean via two distinct processes. Frontiers in Plant Science, 1-7.
Raeisi Sadati, S.Y., Godehkahriz S. J., Ebadi A. and Sedghi M. (2022). Zinc Oxide Nanoparticles Enhance Drought Tolerance in Wheat via Physio-Biochemical Changes and Stress Genes Expression. Iranian Journal of Biotechnology, 20(1), e3027.
Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y. and Lin, H. X. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37(10), 1141-1146. https://doi.org/10.1038/ng1643
Rezaei, M. and Abbasi, H. (2014). Foliar application of nanochelate and non-nanochelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iranian Journal of Plant Physiology. 4, 1137-1144.
Sadeghipour, O. (2017). Nitric oxide increases Pb tolerance by lowering Pb uptake and translocation as well as phytohormonal changes in cowpea (Vigna unguiculata (L.) Walp.). Sains Malaysiana, 46(2), 189-195. https://doi.org/10.17576/jsm-2017-4602-02
Samei, M., Sarrafzadeh, M. H. and Faramarzi, M. A. (2019). The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environmental Science and Pollution Research, 26(3), 2409-2420. https://doi.org/10.1007/s11356-018-3787-z
Selvaraj, K., and Dananjeyan, B. (2016). Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14. Frontiers in Plant Science, 7, 446. https://doi.org/10.3389/fpls.2016.00446
Soleimani, V., Ahmadi, J., Sadeghzadeh, B. and Golkari, S. (2017). The expression of GmP5CS, GmPAP3, and GmBZIP50 genes under saline condition in soybean using real-time PCR. Genetics, 49(2), 483-494. https://doi.org/10.2298/GENSR1702483S
Soliman, A. S., El-feky, S. A. and Darwish, E. (2015). Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. Journal of Horticulture and Forestry, 7, 36-47. https://doi.org/10.5897/JHF2014.0379
Taffouo, V. D., Kouamou, J. K., Ngalangue, L. M. T., Ndjeudji, B. A. N. and Akoa, A. (2009). Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna unguiculata L. Walp.) cultivars. International Journal of Botany, 5(2), 135-143. https://doi.org/10.3923/ijb.2009.135.143
Tombesi, S., Cincera, I., Frioni, T., Ughini, V., Gatti, M., Palliotti, A. and Poni, S. (2019). Relationship among night temperature, carbohydrate translocation and inhibition of grapevine leaf photosynthesis. Environmental and Experimental Botany, 157, 293-298. https://doi.org/10.1016/j.envexpbot.2018.10.023
Van Zanten, H. H., Mollenhorst, H., Klootwijk, C. W., Van Middelaar, C. E. and De Boer, I. J. (2016). Global food supply: land use efficiency of livestock systems. The International Journal of Life Cycle Assessment, 21(5), 747-758. https://doi.org/10.1007/s11367-015-0944-1
Vogel, A., Spener, F. and Krebs, B. (2001). Purple acid phosphatase. Handbook of metalloproteins. Chichester, 752-766.
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. and Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60.
Wu, C. A., Yang, G. D., Meng, Q. W. and Zheng, C. C. (2004). The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant and Cell Physiology, 45(5), 600-607. https://doi.org/10.1093/pcp/pch071
Yamaguchi, T., Hamamoto, S. and Uozumi, N. (2013). Sodium transport system in plant cells. Frontiers in Plant Science, 4, 410. https://doi.org/10.3389/fpls.2013.00410
Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J. and Ma, Y. (2009). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 60(13), 3781-3796. https://doi.org/10.1093/jxb/erp214
Zhang, X., Zörb, C. and Geilfus, C. M. (2020). The root as a sink for chloride under NaCl-salinity. Plant Physiology and Biochemistry, 155,161-168. https://doi.org/10.1016/j.plaphy.2020.06.036
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Reda Mohamed GAAFAR, Mohamed Lotfi HALAWA, Adel Ramadan EL-SHANSHORY, Abdelhamid Abdelrahim EL-SHAER, Rana Hosny DIAB, Marwa Mahmoud HAMOUDA
This work is licensed under a Creative Commons Attribution 4.0 International License.