Molecular diversity of rice (Oryza sativa L.) genotypes in Malaysia based on SSR markers
DOI:
https://doi.org/10.14720/aas.2022.118.4.2500Keywords:
molecular diversity, SSR markers, polymorphic information content, riceAbstract
Rice crop improvement is determined by the degree of genetic variability and the heritability of favorable genes. A total of twenty-five SSR markers were used to measure the level of polymorphism and genetic variation among the 65 rice genotypes. Twenty-one of the twenty-five SSRs were discovered to be polymorphic, whereas the rest were determined to be monomorphic. A total of 91 alleles were found in 21 SSR markers, with an average of 4.00 alleles which ranged from 3 (RM335, RM551, RM538 RM190, RM242 and RM270) to 7 (RM263). The average PIC value was 0.62 ranging from 0.28 (RM 270) to 0.76 (RM 481). The rice genotypes were divided into nine primary clusters by a dendrogram based on NTSYS software’s UPGMA analysis. The cluster analysis revealed that these genotypes were divided into nine clusters where cluster IB-1a has the most genotypes (31) followed by cluster IB-1b (24).The genotype BR24 and Utri as well as Pukhi and WANGI PUTEH had the highest dissimilarity coefficient values indicating genotype diversity. These accessions have a lot of genetic diversity among the constituents; thus, they could be used directly in a hybridization program to improve yield-related parameters.
References
Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181–186. https://doi.org/10.1139/93-024 DOI: https://doi.org/10.1139/g93-024
Ashraf, H., Husaini, A. M., Ashraf Bhat, M., Parray, G., Khan, S., & Ganai, N. A. (2016). SSR based genetic diversity of pigmented and aromatic rice (Oryza sativa L.) genotypes of the western Himalayan region of India. Physiology and Molecular Biology of Plants, 22(4), 547–555. https://doi.org/10.1007/s12298-016-0377-8 DOI: https://doi.org/10.1007/s12298-016-0377-8
Becerra, V., Paredes, M., Ferreira, M. E., Gutiérrez, E., & Díaz, L. M. (2017). Assessment of the genetic diversity and population structure in temperate japonica rice germplasm used in breeding in Chile, with SSR markers. Chilean Journal of Agricultural Research, 77(1), 15–26. https://doi.org/10.4067/S0718-58392017000100002 DOI: https://doi.org/10.4067/S0718-58392017000100002
Bohra, A., Jha, R., Pandey, G., Patil, P. G., Saxena, R. K., Singh, I. P., Singh, D., Mishra, R. K., Mishra, A., Singh, F., Varshney, R. K., & Singh, N. P. (2017). New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea [Cajanus cajan (L.) Millspaugh]. Frontiers in Plant Science, 8(March), 1–15. https://doi.org/10.3389/fpls.2017.00377 DOI: https://doi.org/10.3389/fpls.2017.00377
Brumlop, S., & Finckh, M. R. (2011). Applications and potentials of marker assisted selection (MAS) in plant breeding: final report of the F+ E project” Applications and Potentials of Smart Breeding”(FKZ 350 889 0020)-on behalf of the Federal Agency for Nature Conservation.
Buzatti, R. S. de O., Pfeilsticker, T. R., Muniz, A. C., Ellis, V. A., Souza, R. P. de, Lemos-Filho, J. P., & Lovato, M. B. (2019). Disentangling the environmental factors that shape genetic and ghenotypic leaf trait variation in the tree Qualea grandiflora across the Brazilian Savanna. Frontiers in Plant Science, 10(December), 1–14. https://doi.org/10.3389/fpls.2019.01580 DOI: https://doi.org/10.3389/fpls.2019.01580
Dhama, Nishat, Saini, R. K., Kumar, R., Chaudhary, D. P., Maurya, B. K., Sharma, M., Sen, M., Kumar, D., Malik, P., & Kumar, P. (2018). Analysis of genetic diversity in rice (Oryza Sativa L .) cultivars using SSR. Bulletin of Environmental Pharmacology and Life Science, 7(3), 1–7.
Doyle, J. J., & Doyle, J. L. (1987). Doyle plant DNA extract. Phytochemical Bulletin, 19(1), 11–15.
Gedil, M., & Menkir, A. (2019). An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Frontiers in Plant Science, 10(November), 1–17. https://doi.org/10.3389/fpls.2019.01430 DOI: https://doi.org/10.3389/fpls.2019.01430
Hernández, H. G., Tse, M. Y., Pang, S. C., Arboleda, H., & Forero, D. A. (2013). Optimizing methodologies for PCR-based DNA methylation analysis. BioTechniques, 55(4), 181–197. https://doi.org/10.2144/000114087 DOI: https://doi.org/10.2144/000114087
Huang, M., Xie, F. M., Chen, L. Y., Zhao, X. Q., Jojee, L., & Madonna, D. (2010). Comparative analysis of genetic diversity and structure in rice using ILP and SSR markers. Rice Science, 17(4), 257–268. https://doi.org/10.1016/S1672-6308(09)60025-1 DOI: https://doi.org/10.1016/S1672-6308(09)60025-1
Hue, H. T., Nghia, L. T., Minh, H. T., Anh, L. H., Trang, L. T. T., & Khanh, T. D. (2018). Evaluation of genetic diversity of local-colored rice landraces using SSR markers. International Letters of Natural Sciences, 67, 24–34. https://doi.org/10.18052/www.scipress.com/ilns.67.24 DOI: https://doi.org/10.56431/p-9083l3
Koskey, G., Mburu, S. W., Kimiti, J. M., Ombori, O., Maingi, J. M., & Njeru, E. M. (2018). Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Frontiers in Microbiology, 9(MAY), 1–12. https://doi.org/10.3389/fmicb.2018.00968 DOI: https://doi.org/10.3389/fmicb.2018.00968
Linda, M., Arshiya N., & Maria A. P. (2009).Assessing plant genetic diversity by molecular tools. Jounal of MDPIDiversity, 1, 19-35; https://doi.org/10.3390/d1010019 DOI: https://doi.org/10.3390/d1010019
McCouch, S. R., Temnykh, S., Lukashova, A., Coburn, J., DeClerck, G., Cartinhour, S., Harrington, S., Thomson, M., Septiningsih, E., Semon, M., Moncada, P., & Jimin, L. (2008). Microsatellite markers in rice: abundance, diversity, and applications. In: Rice Genetics IV. IRRI. Manila, Philippines (pp. 117–135). https://doi.org/10.1142/9789812814296_0008 DOI: https://doi.org/10.1142/9789812814296_0008
Nachimuthu, V. V., Raveendran, M., Duraialaguraja, S., Sivakami, R., Pandian, B. A., Ponniah, G., Gunasekaran, K., Swaminathan, M., K K, S., & Sabariappan, R. (2015). Analysis of population structure and genetic diversity in rice germplasm using SSR markers: An initiative towards association mapping of agronomic traits in Oryza sativa L. Rice, 8(1). https://doi.org/10.1186/s12284-015-0062-5 DOI: https://doi.org/10.1186/s12284-015-0062-5
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401 DOI: https://doi.org/10.1080/13102818.2017.1400401
Osekita, O., Akinyele, B., & Odiyi, A. (2015). Evaluation of exotic rice varieties for genetic parameters in a Nigerian agro-ecology. International Journal of Plant & Soil Science, 5(6), 350–358. https://doi.org/10.9734/ijpss/2015/12828 DOI: https://doi.org/10.9734/IJPSS/2015/12828
Pathak, P., Singh, S. K., Korada, M., Habde, S., Singh, D. K., Khaire, A., & Kumar Majhi, P. (2020). Genetic characterization of local rice (Oryza sativa L.) genotypes at morphological and molecular level using SSR markers. Journal of Experimental Biology and Agricultural Sciences, 8(2), 148–156. https://doi.org/10.18006/2020.8(2).148.156 DOI: https://doi.org/10.18006/2020.8(2).148.156
Rohlf Fj. (1987). NTSYS-pc Version. 2.02i Numerical Taxonomy and Multivariate Analysis System. Applied Biostatistics Inc., Exeter Software, Setauket, New York. https://doi.org/10.2307/2684761 DOI: https://doi.org/10.2307/2684761
Sahagun-castellanos, J. (1985). Efficiency of augmented designs for selection. In Doctoral dissertation. Iowa State University.
Serrote, C. M. L., Reiniger, L. R. S., Silva, K. B., Rabaiolli, S. M. dos S., & Stefanel, C. M. (2020). Determining the polymorphism information content of a molecular marker. Gene, 726, 144175. https://doi.org/10.1016/j.gene.2019.144175 DOI: https://doi.org/10.1016/j.gene.2019.144175
Singh, A., Saini, R., Singh, J., Arya, M., Ram, M., Pallavi, Mukul, & Singh, P. K. (2014). Genetic diversity studies in rice (Oryza sativa L.) using microsatellite markers. International Journal of Agriculture, Environment and Biotechnology, 8(1), 143. https://doi.org/10.5958/2230-732x.2015.00019.4 DOI: https://doi.org/10.5958/2230-732X.2015.00019.4
Singh, N., Choudhury, D. R., Tiwari, G., Singh, A. K., Kumar, S., Srinivasan, K., Tyagi, R. K., Sharma, A. D., Singh, N. K., & Singh, R. (2016). Genetic diversity trend in Indian rice varieties: An analysis using SSR markers. BMC Genetics, 17(1), 1–13. https://doi.org/10.1186/s12863-016-0437-7 DOI: https://doi.org/10.1186/s12863-016-0437-7
Siva, R., Kumar, K., & Rajasekaran, C. (2013). Genetic diversity study of important Indian rice genotypes using biochemical and molecular markers. African Journal of Biotechnology, 12(10), 1004–1009. https://doi.org/10.5897/AJB10.797
Sonkar, S., Singh, S. K., Vennela, P. R., & Singh, D. K. (2016). Molecular marker based genetic diversity analysis in rice genotypes (Oryza sativa L.) using SSR markers. International Journal of Agriculture, Environment and Biotechnology, 9(1), 45–51. https://doi.org/10.5958/2230-732X.2016.00007.3 DOI: https://doi.org/10.5958/2230-732X.2016.00007.3
Sun, P., Jia, H., Yue, Z., Li, J., Li, J., Zhang, J., Lu, M., & Hu, J. (2020). Genetic identification of 91 poplar cultivars based on SSR markers. Nordic Journal of Botany, 38(6). https://doi.org/10.1111/njb.02504 DOI: https://doi.org/10.1111/njb.02504
Tarang, A., Kordrostami, M., Shahdi Kumleh, A., Hosseini Chaleshtori, M., Forghani Saravani, A., Ghanbarzadeh, M., & Sattari, M. (2020). Study of genetic diversity in rice (Oryza sativa L.) cultivars of Central and Western Asia using microsatellite markers tightly linked to important quality and yield related traits. Genetic Resources and Crop Evolution, 67(6), 1537–1550. https://doi.org/10.1007/s10722-020-00927-2 DOI: https://doi.org/10.1007/s10722-020-00927-2
Thomson, M. J., de Ocampo, M., Egdane, J., Rahman, M. A., Sajise, A. G., Adorada, D. L., Tumimbang-Raiz, E., Blumwald, E., Seraj, Z. I., Singh, R. K., Gregorio, G. B., & Ismail, A. M. (2010). Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 3(2–3), 148–160. https://doi.org/10.1007/s12284-010-9053-8 DOI: https://doi.org/10.1007/s12284-010-9053-8
Toppo, A., Rastogi, N., Sarawgi, A., & Saxena, R. R. (2018). Molecular characterization of rice accessions using microsatellite markers. Indian Journal of Plant Genetic Resources, 31(3), 310. https://doi.org/10.5958/0976-1926.2018.00036.0 DOI: https://doi.org/10.5958/0976-1926.2018.00036.0
Uba, C. U., Oselebe, H. O., Tesfaye, A. A., & Abtew, W. G. (2021). Genetic diversity and population structure analysis of bambara groundnut (Vigna subterrenea L) landraces using DArT SNP markers. PloS One, 16(7), e0253600. https://doi.org/10.1371/journal.pone.0253600 DOI: https://doi.org/10.1371/journal.pone.0253600
Xu, Y., Li, P., Zou, C., Lu, Y., Xie, C., Zhang, X., Prasanna, B. M., & Olsen, M. S. (2017). Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 68(11), 2641–2666. https://doi.org/10.1093/jxb/erx135 DOI: https://doi.org/10.1093/jxb/erx135
Yadav, M. K., Aravindan, S., Ngangkham, U., Shubudhi, H. N., Bag, M. K., Adak, T., Munda, S., Samantaray, S., & Jena, M. (2017). Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS ONE, 12(4), 1–19. https://doi.org/10.1371/journal.pone.0176236 DOI: https://doi.org/10.1371/journal.pone.0176236
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Mohammad ANISUZZAMAN, Mohammad Rafiqul ISLAM, Hasina KHATUN, Mohammad Amdadul HAQUE, Mahammad Shariful ISLAM, Mohammad Shamim AHSAN

This work is licensed under a Creative Commons Attribution 4.0 International License.