Frost hardiness of apple generative buds during dormancy

Authors

  • László SZALAY Hungarian University of Agriculture and Life Sciences, Department of Pomology, Budapest, Hungary
  • József László BAKOS Hungarian University of Agriculture and Life Sciences, Department of Pomology, Budapest, Hungary
  • Magdolna TÓTH Almakúti Ltd., H-8353 Zalaszántó HRSZ. 0171/21., Hungary

DOI:

https://doi.org/10.14720/aas.2022.118.4.2677

Keywords:

Malus x domestica, artificial freezing tests, LT50 values, dormancy, generative buds

Abstract

The success of apple production is influenced by frost damages. Occurrence of extreme temperatures is increasing worldwide because of global warming, so the risk of frost damages is also increasing in apple orchards during dormancy and blooming time. In our work the frost hardiness of flower buds of eight apple cultivars was observed with artificial freezing tests during four subsequent dormancy periods in Hungary. The studied cultivar assortment contained two standard commercial cultivars (‘Gala’, ‘Idared’), two scab-resistant cultivars from abroad breeding programmes (‘Florina’, ‘Prima’) and four new Hungarian multi-resistant (mainly scab-resistant) cultivars (‘Artemisz’, ‘Cordelia’, ‘Hesztia’, ‘Rosmerta’). There were remarkable differences between cultivars and years from the aspect of frost hardiness of generative overwintering organs. At the end of hardening period, in January, the LT50 values of flower buds were between -22.4 °C and -30.4 °C according to cultivar and year. LT50 means the temperature causing 50 % frost damage in the flower buds of the certain cultivar in the certain time. ‘Gala’ and ‘Florina’ were the most frost hardy, while ‘Prima’, ‘Cordelia’ and ‘Idared’ the most sensitive to frost. Cold hardiness values of flower buds of ‘Artemisz’, ‘Rosmerta’ and ‘Hesztia’ cultivars were regularly between the values of two extreme groups. In winters with inappropriate weather the generative overwintering organs were unable to reach the genetically possible frost hardiness of them.

Author Biographies

  • László SZALAY, Hungarian University of Agriculture and Life Sciences, Department of Pomology, Budapest, Hungary

    Department of Pomology

    associate professor

  • József László BAKOS, Hungarian University of Agriculture and Life Sciences, Department of Pomology, Budapest, Hungary

    Department of Pomology

    PhD student

  • Magdolna TÓTH, Almakúti Ltd., H-8353 Zalaszántó HRSZ. 0171/21., Hungary
    Professor

References

Ashworth, E.N., Echlin, P., Pearce, R.S., Hayes, T.L. (1988). Ice formation and tissue response in apple twigs. Plant Cell Environment, 11, 703–710. https://doi.org/10.1111/j.1365-3040.1988.tb011 53.x

Aygün, A., San, B. (2005). The late spring frost hardiness of some apple varieties at various stages of flower buds. Tarim Bilimleri Dergisi, 11(3), 283-285. https://doi.org/10.1501/Tarimbil_0000000571

Ceccardi, T.L., Heath, R.L., Ting, I.P. (1995). Low temperature exotherm measurement using infrared thermography. Hort Science, 30, 140–142. https://doi.org/10.21273/HORTSCI.30.1.140

Chandler, W. H. (1954). Cold resistance in horticultural plants: A review. Proceedings of American Society for Horticultural Sciences, 64, 552-572.

Childers, N.F. (1949). Fruit science. J.B. Lippincott Co., New York.

Cline, J. A., Neilsen, D., Neilsen, G., Brownlee, R., Norton, D., Quamme, H. (2012). Cold hardiness of new apple cultivars of commercial importance in Canada. Journal of the American Pomological Society, 66(4), 174–182.

Coleman, W.K. (1992). Proposed winter-injury classification for apple trees on the northern fridge of commercial production. Canadian Journal of Plant Science, 72, 507-516. https://doi.org/10.4141/cjps92-064

Dremák, P. (2011). Fagykárosodás az ökológiai és integrált technológiájú almaültetvényekben (Frost damage in organic and integrated apple orchards). Klíma-21 Füzetek, 64, 27-31. (In Hungarian)

Eccel, E., Rea, R., Caffarra, A., Crisci, A. (2009). Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. International Journal of Biometeorology, 53(3), 273-286. doi.org/10.1007/s00484-009-0235-2

Faust, M. (1989). Physiology of Temperate Zone Fruit Trees. John Wiley and Sons, New York.

Forsline, P.L. (1983). Winter hardiness of common New York apple varieties and rootstocks as determined by artificial freezing. Proceedings of the 128th Annual Meeting of the New York Horticulture Society, 20-41.

Friedrich, G., Fischer, M. (2000). Physiologische Grundlagen des Obstbaues. Ulmer, Stuttgart, Germany.

Gu, S. (1999). Lethal temperature coefficient – a new parameter for interpretation of cold hardiness. Journal of Horticultural Science and Biotechnology, 74, 53-59. https://doi.org/10.1080/14620316.1999.11511071

Heide, O.M., & Prestrud, A.K. (2005). Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25, 109–114. https://doi.org/10.1093/treephys/25.1.109

Holubowicz, T., Cumminis, J.N., Forsline, P.L. (1982). Responses of Malus clones to programmed low-temperature stresses in late winter. Journal of the American Society for Horticultural Science, 107(3), 492-496. https://doi.org/10.21273/JASHS.107.3.492

Howell, G.S., & Weiser, C.J. (1970). The environmental control of cold acclimation in apple. Plant Physiology, 45, 390-394. https://doi.org/10.1104/pp.45.4.390

Janick, J., & Moore, J.N. (1996). Fruit breeding. John Wiley and Sons, New York.

Kang, S.K., Motosugi, K., Yonemori, K., Sugiura, A. (1998). Supercooling characteristics of some deciduous fruit trees as releted to water movement within the bud. Journal of Horticultural Science and Biotechnology, 73(2), 165-172. https://doi.org/10.1080/14620316.1998.11510960

Kaukoranta, T., Tahvonen, R., Ylamaki, A. (2010). Climatic potencial and risks for apple growing by 2040. Agriculture and Food Science, 19, 144-159. https://doi.org/10.2137/145960610791542352

Kaya, O., Kose, C., Donderalp, V., Gecim, T., Taskin, S. (2020). Last updates on cell death point, bud death time and exothermic characteristics of flower buds for deciduous fruit species by using differential thermal analysis. Scientia Horticulturae, 270, 109403. https://doi.org/10.1016/j.scienta.2020.109403

Lindén, L. (2002). Measuring cold hardiness in woody plants. Academic Dissertation, Faculty of Applied Biology, University of Helsinki, Finland.

Lindén, L., Rita, H., Suojala, T. (1996). Logit models for estimating lethal temperatures in apple. Hort Science, 31(1), 91-93. https://doi.org/10.21273/HORTSCI.31.1.91

Lindén, L., Palonen, P., Seppanen, M., Vainola, A. (1999). Cold hardiness research on agricultural crops in Finland, Review. Agricultural and Food Science in Finland, 8, 459-477. https://doi.org/10.23986/afsci.5641

Lysiak, G.P., Kurlus, R., Michalsa, A. (2016). Increasing the frost resistance of ’Golden Delicious’, ’Gala’ and ’Sampion’ apple cultivars. Folia Horticulturae, 28(2), 125-135. https://doi.org/10.1515/fhort-2016-0015

Mittelstadt, H., Murawski, H. (1975). Beitrage zur Züchtungsforschung beim apfel. XVII. Untersuchungen zurfrostresistenz an apfelsorten. Archiv für Züchtungsforschung, 5, 71-81.

Modlibowska, I. (1946). Frost injury to apples. Journal of Horticultural Science, 22, 46-50. https://doi.org/10.1080/03683621.1946.11513629

Nybom, H. (1992). Freeze damage to flower buds of some apple cultivars. Journal of Horticultural Science, 67(2), 171-177. https://doi.org/10.1080/00221589.1992.11516234

Ozherelieva, Z., Sedov, E. (2017). Low temperature tolerance of apple cultivars of different ploidy at different times of the winter. Proceedings of the Latvian Academy of Sciences. Section B., 71(3), 127–131. https://doi.org/10.1515/prolas-2017-0022

Palmer, J.W., Privé, J.P., Tustin, D.S. (2003). Temperature. In Ferree, D.C., Warrington, I.J. (Eds.), Apples (pp. 217-236). CABI Publishing, Reading, UK. https://doi.org/10.1079/9780851995922.0217

Palonen, P., & Buszard, D. (1997). Current state of cold hardiness research on fruit crops. Canadian Journal of Plant Science, 77, 399-420. https://doi.org/10.4141/P96-013

Pearce, R S. (2001). Plant freezing and damage. Annals of Botany, 87, 417-424. https://doi.org/10.1006/anbo.2000.1351

Pramsohler, M., Hacker, J., Neuner, G. (2012). Freezing pattern and frost killing temperature of apple (Malus x domestica) wood under controlled conditions and in nature. Tree Physiology, 32, 819–828. https://doi.org/10.1093/treephys/tps046

Pramsohler, M., & Neuner, G. (2013). Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds. Tree Physiology, 33, 807–816. https://doi.org/10.1093/treephys/tpt057

Quamme, H.A., Stushnoff, C., Weiser, C.J. (1972). The relationship of exotherms to cold injury in apple stem tissues. Journal of the American Society for Horticultural Science, 97, 608–613. https://doi.org/10.21273/JASHS.97.5.608

Quamme, H.A. (1976). Relationship of the low temperature exotherm to apple and pear production in North America. Canadian Journal of Plant Science, 56, 493–500. https://doi.org/10.4141/cjps76-081

Quamme, H.A. (1991). Application of thermal analysis to breeding fruit crops for increased cold hardiness. Hort Science, 26, 513–517. https://doi.org/10.21273/HORTSCI.26.5.513

Quamme, H.A., Chen, P.M., Gusta, L.V. (1982). Relationship of deep supercooling and dehydration resistance to freezing injury in dormant stem tissues of ‘Starkrimson Delicious’ apple and ‘Siberian C’ peach. Journal of the American Society for Horticultural Science, 107, 299-304. https://doi.org/10.21273/JASHS.107.2.299

Quamme, H.A., Weiser, C.J., Stushnoff, C. (1973). The mechanism of freezing injury in xylem of winter apple twigs. Plant Physiology, 51, 273–277. https://doi.org/10.1104/pp.51.2.273

Quinones, A.J.P., Gutierrez, M.R.S., Hoogenboom, G. (2020). A methodological approach to determine flower bud vulnerability to low temperatures for deciduous crops in early spring using degree days. Hort Science, 55(5), 651–657. https://doi.org/10.21273/HORTSCI14689-19

Rodrigo, J. (2000). Spring frosts in deciduous fruit trees – morphological damage and flower hardiness. Scientia Horticulturae, 85, 155-173. https://doi.org/10.1016/S0304-4238(99)00150-8

Salazar-Gutiérrez, R.M., Chaves, B., Hoogenboom, G. (2016). Freezing tolerance of apple flower buds. Scientia Horticulturae, 198, 344-351. https://doi.org/10.1016/j.scienta.2015.12.003

Soltész, M. (1988). Frost damages of apple cultivars (Az almafajták fagykárosodása). Gyümölcs-Inform, 88(1), 9-15. (In Hungarian)

Soltész, M., Nyéki, J., Szabó, Z. (2010). A gyümölcstermesztést veszélyeztető extrém időjárási hatások előrejelzése és gazdaságos védekezési technológiák kidolgozása (Forecasting extreme weather effects threatening fruit production and developing economical control technologies). Nemzeti Technológiai Program pályázati jelentés. http://www.kfi-kutatas.hu/file/klima2010.pdf. (In Hungarian)

Szalay L., Timon B., Németh Sz., Papp J., Tóth M. (2010). Hardening and dehardening of peach flower buds. Hort Science, 45(5), 761-765. https://doi.org/10.21273/HORTSCI.45.5.761

Szalay, L., Gyökös, I.G., Békefi, Z. (2018). Cold hardiness of peach flowers at different phenological stages. Horticultural Science (Prague), 45(3), 119-124. https://doi.org/10.17221/146/2016-HORTSCI

Szalay, L., György, Zs, Tóth, M. (2019). Frost hardiness of apple (Malus x domestica) flowers in different phenological phases. Scientia Horticulturae, 253, 309-315. https://doi.org/10.1016/j.scienta.2019.04.055

Tóth, M. (1982). Frost damages of buds and flowers of apple cultivars (Almafajták bimbóinak és virágainak fagykárosodása). Gyümölcs-Inform, 82(2), 80-82. (In Hungarian)

Tóth, M. (2004). Frost damages as a risk factor of apple growing (Fagykárosodás az almatermesztés kockázati tényezője). AGRO-21 Books, 34, 21-36. (In Hungarian).

Tóth, M. (2013). The Apple (Az alma). Magyarország kultúrflórája. II. kötet. 3. füzet. Agroinform Co, Budapest. (In Hungarian)

Tóth, M., Ficzek, G., Király, I., Kovács, S., Hevesi, M., Halász, J., Szani, Z. (2012). ‘Artemisz’, ‘Cordelia’, ‘Hesztia’ and ‘Rosmerta’, the new Hungarian multi-resistant apple cultivars. Hort Science, 42(2), 1795-1800. https://doi.org/10.21273/HORTSCI.47.12.1795

Tromp, J. (2005). Frost and plant hardiness. In Tromp, J., Webster, A.D., Wertheim S.J. (Eds.), Fundamentals of Temperate Zone Tree Fruit Production (pp. 74-83). Backhuys Publishers, Leiden, The Netherlands,

Tudela V., & Santibanez, F. (2016). Modelling impact of freezing temperatures on reproductive organs of deciduous fruit trees. Agricultural and Forest Meteorology, 226-227, 28-36. https://doi.org/10.1016/j.agrformet.2016.05.002

Vitasse, Y., Schneider, L., Rixen, C., Christen, D., Rebetez, M. (2018). Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248, 60-69. https://doi.org/10.1016/j.agrformet.2017.09.005

Warner, J. (1982). Winter injury to apple trees, 1980-1981. Fruit Varieties Journal, 36(4), 99-103.

Westwood, M.N. (1993). Dormancy and plant hardiness In Westwood, M.N. Temperate-Zone Pomology: Physiology and Culture (pp. 382-419). 3rd Edition, Timber Press, Portland, Oregon.

Wu, D., Kukkonen, A., Luoranen, J., Pulkkinen, P., Heinonen, J., Pappinen, A., Repo, T. (2019). Influence of late autumn preconditioning temperature on frost hardiness of apple, blueberry and blackcurrant saplings. Scientia Horticulture, 258, 108755. https://doi.org/10.1016/j.scienta.2019.108755

Yu, D.J., & Lee, H.J. (2020). Evaluation of freezing injury in temperate fruit trees. Horticulture Environment and Biotechnology, 61, 787–794. https://doi.org/10.1007/s13580-020-00264-4

Zatykó, I. (1986). Effect of frost damages in different times on the yield of apple (Különböző időszakokban bekövetkezett fagyok terméscsökkentő hatása az almánál). Gyümölcs-Inform, 86(3), 108-112. (In Hungarian)

Downloads

Published

30. 12. 2022

Issue

Section

Original Scientific Article

How to Cite

Frost hardiness of apple generative buds during dormancy. (2022). Acta Agriculturae Slovenica, 118(4), 1–7. https://doi.org/10.14720/aas.2022.118.4.2677

Similar Articles

1-10 of 211

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)