Frost hardiness of apple generative buds during dormancy
DOI:
https://doi.org/10.14720/aas.2022.118.4.2677Keywords:
Malus x domestica, artificial freezing tests, LT50 values, dormancy, generative budsAbstract
The success of apple production is influenced by frost damages. Occurrence of extreme temperatures is increasing worldwide because of global warming, so the risk of frost damages is also increasing in apple orchards during dormancy and blooming time. In our work the frost hardiness of flower buds of eight apple cultivars was observed with artificial freezing tests during four subsequent dormancy periods in Hungary. The studied cultivar assortment contained two standard commercial cultivars (‘Gala’, ‘Idared’), two scab-resistant cultivars from abroad breeding programmes (‘Florina’, ‘Prima’) and four new Hungarian multi-resistant (mainly scab-resistant) cultivars (‘Artemisz’, ‘Cordelia’, ‘Hesztia’, ‘Rosmerta’). There were remarkable differences between cultivars and years from the aspect of frost hardiness of generative overwintering organs. At the end of hardening period, in January, the LT50 values of flower buds were between -22.4 °C and -30.4 °C according to cultivar and year. LT50 means the temperature causing 50 % frost damage in the flower buds of the certain cultivar in the certain time. ‘Gala’ and ‘Florina’ were the most frost hardy, while ‘Prima’, ‘Cordelia’ and ‘Idared’ the most sensitive to frost. Cold hardiness values of flower buds of ‘Artemisz’, ‘Rosmerta’ and ‘Hesztia’ cultivars were regularly between the values of two extreme groups. In winters with inappropriate weather the generative overwintering organs were unable to reach the genetically possible frost hardiness of them.
References
Ashworth, E.N., Echlin, P., Pearce, R.S., Hayes, T.L. (1988). Ice formation and tissue response in apple twigs. Plant Cell Environment, 11, 703–710. https://doi.org/10.1111/j.1365-3040.1988.tb011 53.x DOI: https://doi.org/10.1111/j.1365-3040.1988.tb01153.x
Aygün, A., San, B. (2005). The late spring frost hardiness of some apple varieties at various stages of flower buds. Tarim Bilimleri Dergisi, 11(3), 283-285. https://doi.org/10.1501/Tarimbil_0000000571 DOI: https://doi.org/10.1501/Tarimbil_0000000571
Ceccardi, T.L., Heath, R.L., Ting, I.P. (1995). Low temperature exotherm measurement using infrared thermography. Hort Science, 30, 140–142. https://doi.org/10.21273/HORTSCI.30.1.140 DOI: https://doi.org/10.21273/HORTSCI.30.1.140
Chandler, W. H. (1954). Cold resistance in horticultural plants: A review. Proceedings of American Society for Horticultural Sciences, 64, 552-572.
Childers, N.F. (1949). Fruit science. J.B. Lippincott Co., New York.
Cline, J. A., Neilsen, D., Neilsen, G., Brownlee, R., Norton, D., Quamme, H. (2012). Cold hardiness of new apple cultivars of commercial importance in Canada. Journal of the American Pomological Society, 66(4), 174–182.
Coleman, W.K. (1992). Proposed winter-injury classification for apple trees on the northern fridge of commercial production. Canadian Journal of Plant Science, 72, 507-516. https://doi.org/10.4141/cjps92-064 DOI: https://doi.org/10.4141/cjps92-064
Dremák, P. (2011). Fagykárosodás az ökológiai és integrált technológiájú almaültetvényekben (Frost damage in organic and integrated apple orchards). Klíma-21 Füzetek, 64, 27-31. (In Hungarian)
Eccel, E., Rea, R., Caffarra, A., Crisci, A. (2009). Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. International Journal of Biometeorology, 53(3), 273-286. doi.org/10.1007/s00484-009-0235-2 DOI: https://doi.org/10.1007/s00484-009-0213-8
Faust, M. (1989). Physiology of Temperate Zone Fruit Trees. John Wiley and Sons, New York.
Forsline, P.L. (1983). Winter hardiness of common New York apple varieties and rootstocks as determined by artificial freezing. Proceedings of the 128th Annual Meeting of the New York Horticulture Society, 20-41.
Friedrich, G., Fischer, M. (2000). Physiologische Grundlagen des Obstbaues. Ulmer, Stuttgart, Germany.
Gu, S. (1999). Lethal temperature coefficient – a new parameter for interpretation of cold hardiness. Journal of Horticultural Science and Biotechnology, 74, 53-59. https://doi.org/10.1080/14620316.1999.11511071 DOI: https://doi.org/10.1080/14620316.1999.11511071
Heide, O.M., & Prestrud, A.K. (2005). Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25, 109–114. https://doi.org/10.1093/treephys/25.1.109 DOI: https://doi.org/10.1093/treephys/25.1.109
Holubowicz, T., Cumminis, J.N., Forsline, P.L. (1982). Responses of Malus clones to programmed low-temperature stresses in late winter. Journal of the American Society for Horticultural Science, 107(3), 492-496. https://doi.org/10.21273/JASHS.107.3.492 DOI: https://doi.org/10.21273/JASHS.107.3.492
Howell, G.S., & Weiser, C.J. (1970). The environmental control of cold acclimation in apple. Plant Physiology, 45, 390-394. https://doi.org/10.1104/pp.45.4.390 DOI: https://doi.org/10.1104/pp.45.4.390
Janick, J., & Moore, J.N. (1996). Fruit breeding. John Wiley and Sons, New York.
Kang, S.K., Motosugi, K., Yonemori, K., Sugiura, A. (1998). Supercooling characteristics of some deciduous fruit trees as releted to water movement within the bud. Journal of Horticultural Science and Biotechnology, 73(2), 165-172. https://doi.org/10.1080/14620316.1998.11510960 DOI: https://doi.org/10.1080/14620316.1998.11510960
Kaukoranta, T., Tahvonen, R., Ylamaki, A. (2010). Climatic potencial and risks for apple growing by 2040. Agriculture and Food Science, 19, 144-159. https://doi.org/10.2137/145960610791542352 DOI: https://doi.org/10.2137/145960610791542352
Kaya, O., Kose, C., Donderalp, V., Gecim, T., Taskin, S. (2020). Last updates on cell death point, bud death time and exothermic characteristics of flower buds for deciduous fruit species by using differential thermal analysis. Scientia Horticulturae, 270, 109403. https://doi.org/10.1016/j.scienta.2020.109403 DOI: https://doi.org/10.1016/j.scienta.2020.109403
Lindén, L. (2002). Measuring cold hardiness in woody plants. Academic Dissertation, Faculty of Applied Biology, University of Helsinki, Finland.
Lindén, L., Rita, H., Suojala, T. (1996). Logit models for estimating lethal temperatures in apple. Hort Science, 31(1), 91-93. https://doi.org/10.21273/HORTSCI.31.1.91 DOI: https://doi.org/10.21273/HORTSCI.31.1.91
Lindén, L., Palonen, P., Seppanen, M., Vainola, A. (1999). Cold hardiness research on agricultural crops in Finland, Review. Agricultural and Food Science in Finland, 8, 459-477. https://doi.org/10.23986/afsci.5641 DOI: https://doi.org/10.23986/afsci.5641
Lysiak, G.P., Kurlus, R., Michalsa, A. (2016). Increasing the frost resistance of ’Golden Delicious’, ’Gala’ and ’Sampion’ apple cultivars. Folia Horticulturae, 28(2), 125-135. https://doi.org/10.1515/fhort-2016-0015 DOI: https://doi.org/10.1515/fhort-2016-0015
Mittelstadt, H., Murawski, H. (1975). Beitrage zur Züchtungsforschung beim apfel. XVII. Untersuchungen zurfrostresistenz an apfelsorten. Archiv für Züchtungsforschung, 5, 71-81.
Modlibowska, I. (1946). Frost injury to apples. Journal of Horticultural Science, 22, 46-50. https://doi.org/10.1080/03683621.1946.11513629 DOI: https://doi.org/10.1080/03683621.1946.11513629
Nybom, H. (1992). Freeze damage to flower buds of some apple cultivars. Journal of Horticultural Science, 67(2), 171-177. https://doi.org/10.1080/00221589.1992.11516234 DOI: https://doi.org/10.1080/00221589.1992.11516234
Ozherelieva, Z., Sedov, E. (2017). Low temperature tolerance of apple cultivars of different ploidy at different times of the winter. Proceedings of the Latvian Academy of Sciences. Section B., 71(3), 127–131. https://doi.org/10.1515/prolas-2017-0022 DOI: https://doi.org/10.1515/prolas-2017-0022
Palmer, J.W., Privé, J.P., Tustin, D.S. (2003). Temperature. In Ferree, D.C., Warrington, I.J. (Eds.), Apples (pp. 217-236). CABI Publishing, Reading, UK. https://doi.org/10.1079/9780851995922.0217 DOI: https://doi.org/10.1079/9780851995922.0217
Palonen, P., & Buszard, D. (1997). Current state of cold hardiness research on fruit crops. Canadian Journal of Plant Science, 77, 399-420. https://doi.org/10.4141/P96-013 DOI: https://doi.org/10.4141/P96-013
Pearce, R S. (2001). Plant freezing and damage. Annals of Botany, 87, 417-424. https://doi.org/10.1006/anbo.2000.1351 DOI: https://doi.org/10.1006/anbo.2000.1352
Pramsohler, M., Hacker, J., Neuner, G. (2012). Freezing pattern and frost killing temperature of apple (Malus x domestica) wood under controlled conditions and in nature. Tree Physiology, 32, 819–828. https://doi.org/10.1093/treephys/tps046 DOI: https://doi.org/10.1093/treephys/tps046
Pramsohler, M., & Neuner, G. (2013). Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds. Tree Physiology, 33, 807–816. https://doi.org/10.1093/treephys/tpt057 DOI: https://doi.org/10.1093/treephys/tpt057
Quamme, H.A., Stushnoff, C., Weiser, C.J. (1972). The relationship of exotherms to cold injury in apple stem tissues. Journal of the American Society for Horticultural Science, 97, 608–613. https://doi.org/10.21273/JASHS.97.5.608 DOI: https://doi.org/10.21273/JASHS.97.5.608
Quamme, H.A. (1976). Relationship of the low temperature exotherm to apple and pear production in North America. Canadian Journal of Plant Science, 56, 493–500. https://doi.org/10.4141/cjps76-081 DOI: https://doi.org/10.4141/cjps76-081
Quamme, H.A. (1991). Application of thermal analysis to breeding fruit crops for increased cold hardiness. Hort Science, 26, 513–517. https://doi.org/10.21273/HORTSCI.26.5.513 DOI: https://doi.org/10.21273/HORTSCI.26.5.513
Quamme, H.A., Chen, P.M., Gusta, L.V. (1982). Relationship of deep supercooling and dehydration resistance to freezing injury in dormant stem tissues of ‘Starkrimson Delicious’ apple and ‘Siberian C’ peach. Journal of the American Society for Horticultural Science, 107, 299-304. https://doi.org/10.21273/JASHS.107.2.299 DOI: https://doi.org/10.21273/JASHS.107.2.299
Quamme, H.A., Weiser, C.J., Stushnoff, C. (1973). The mechanism of freezing injury in xylem of winter apple twigs. Plant Physiology, 51, 273–277. https://doi.org/10.1104/pp.51.2.273 DOI: https://doi.org/10.1104/pp.51.2.273
Quinones, A.J.P., Gutierrez, M.R.S., Hoogenboom, G. (2020). A methodological approach to determine flower bud vulnerability to low temperatures for deciduous crops in early spring using degree days. Hort Science, 55(5), 651–657. https://doi.org/10.21273/HORTSCI14689-19 DOI: https://doi.org/10.21273/HORTSCI14689-19
Rodrigo, J. (2000). Spring frosts in deciduous fruit trees – morphological damage and flower hardiness. Scientia Horticulturae, 85, 155-173. https://doi.org/10.1016/S0304-4238(99)00150-8 DOI: https://doi.org/10.1016/S0304-4238(99)00150-8
Salazar-Gutiérrez, R.M., Chaves, B., Hoogenboom, G. (2016). Freezing tolerance of apple flower buds. Scientia Horticulturae, 198, 344-351. https://doi.org/10.1016/j.scienta.2015.12.003 DOI: https://doi.org/10.1016/j.scienta.2015.12.003
Soltész, M. (1988). Frost damages of apple cultivars (Az almafajták fagykárosodása). Gyümölcs-Inform, 88(1), 9-15. (In Hungarian)
Soltész, M., Nyéki, J., Szabó, Z. (2010). A gyümölcstermesztést veszélyeztető extrém időjárási hatások előrejelzése és gazdaságos védekezési technológiák kidolgozása (Forecasting extreme weather effects threatening fruit production and developing economical control technologies). Nemzeti Technológiai Program pályázati jelentés. http://www.kfi-kutatas.hu/file/klima2010.pdf. (In Hungarian)
Szalay L., Timon B., Németh Sz., Papp J., Tóth M. (2010). Hardening and dehardening of peach flower buds. Hort Science, 45(5), 761-765. https://doi.org/10.21273/HORTSCI.45.5.761 DOI: https://doi.org/10.21273/HORTSCI.45.5.761
Szalay, L., Gyökös, I.G., Békefi, Z. (2018). Cold hardiness of peach flowers at different phenological stages. Horticultural Science (Prague), 45(3), 119-124. https://doi.org/10.17221/146/2016-HORTSCI DOI: https://doi.org/10.17221/146/2016-HORTSCI
Szalay, L., György, Zs, Tóth, M. (2019). Frost hardiness of apple (Malus x domestica) flowers in different phenological phases. Scientia Horticulturae, 253, 309-315. https://doi.org/10.1016/j.scienta.2019.04.055 DOI: https://doi.org/10.1016/j.scienta.2019.04.055
Tóth, M. (1982). Frost damages of buds and flowers of apple cultivars (Almafajták bimbóinak és virágainak fagykárosodása). Gyümölcs-Inform, 82(2), 80-82. (In Hungarian)
Tóth, M. (2004). Frost damages as a risk factor of apple growing (Fagykárosodás az almatermesztés kockázati tényezője). AGRO-21 Books, 34, 21-36. (In Hungarian).
Tóth, M. (2013). The Apple (Az alma). Magyarország kultúrflórája. II. kötet. 3. füzet. Agroinform Co, Budapest. (In Hungarian)
Tóth, M., Ficzek, G., Király, I., Kovács, S., Hevesi, M., Halász, J., Szani, Z. (2012). ‘Artemisz’, ‘Cordelia’, ‘Hesztia’ and ‘Rosmerta’, the new Hungarian multi-resistant apple cultivars. Hort Science, 42(2), 1795-1800. https://doi.org/10.21273/HORTSCI.47.12.1795 DOI: https://doi.org/10.21273/HORTSCI.47.12.1795
Tromp, J. (2005). Frost and plant hardiness. In Tromp, J., Webster, A.D., Wertheim S.J. (Eds.), Fundamentals of Temperate Zone Tree Fruit Production (pp. 74-83). Backhuys Publishers, Leiden, The Netherlands,
Tudela V., & Santibanez, F. (2016). Modelling impact of freezing temperatures on reproductive organs of deciduous fruit trees. Agricultural and Forest Meteorology, 226-227, 28-36. https://doi.org/10.1016/j.agrformet.2016.05.002 DOI: https://doi.org/10.1016/j.agrformet.2016.05.002
Vitasse, Y., Schneider, L., Rixen, C., Christen, D., Rebetez, M. (2018). Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248, 60-69. https://doi.org/10.1016/j.agrformet.2017.09.005 DOI: https://doi.org/10.1016/j.agrformet.2017.09.005
Warner, J. (1982). Winter injury to apple trees, 1980-1981. Fruit Varieties Journal, 36(4), 99-103.
Westwood, M.N. (1993). Dormancy and plant hardiness In Westwood, M.N. Temperate-Zone Pomology: Physiology and Culture (pp. 382-419). 3rd Edition, Timber Press, Portland, Oregon.
Wu, D., Kukkonen, A., Luoranen, J., Pulkkinen, P., Heinonen, J., Pappinen, A., Repo, T. (2019). Influence of late autumn preconditioning temperature on frost hardiness of apple, blueberry and blackcurrant saplings. Scientia Horticulture, 258, 108755. https://doi.org/10.1016/j.scienta.2019.108755 DOI: https://doi.org/10.1016/j.scienta.2019.108755
Yu, D.J., & Lee, H.J. (2020). Evaluation of freezing injury in temperate fruit trees. Horticulture Environment and Biotechnology, 61, 787–794. https://doi.org/10.1007/s13580-020-00264-4 DOI: https://doi.org/10.1007/s13580-020-00264-4
Zatykó, I. (1986). Effect of frost damages in different times on the yield of apple (Különböző időszakokban bekövetkezett fagyok terméscsökkentő hatása az almánál). Gyümölcs-Inform, 86(3), 108-112. (In Hungarian)
Downloads
Published
Issue
Section
License
Copyright (c) 2022 László SZALAY, József László BAKOS, Magdolna TÓTH

This work is licensed under a Creative Commons Attribution 4.0 International License.