Antioxidant response of Impatiens walleriana L. to drought

Authors

  • Anamarija MATIJEVIĆ Faculty of Agriculture and Food Sciences University of Sarajevo
  • Ajla ŠAKONJIĆ Faculty of Agriculture and Food Sciences University of Sarajevo
  • Senad MURTIĆ Department of Plant Physiology, Faculty of Agriculture and Food Sciences University of Sarajevo

DOI:

https://doi.org/10.14720/aas.2022.118.4.2438

Keywords:

defence system, free radicals, leaves, plant growth, stress

Abstract

Stress caused by drought induces plant morphology, biochemistry, and physiology changes, leading to considerable reductions in plant growth and productivity. This study aimed to evaluate the antioxidant defence system of impatiens seedlings (Impatiens walleriana L.) under drought. The antioxidant response of impatiens to drought was evaluated using following parameters: the activity of catalase, guaiacol peroxidase, pyrogallol peroxidase and ascorbate peroxidase, total phenolic and flavonoids contents and total antioxidant capacity. The experiment was conducted during 2020 in a greenhouse under controlled conditions. Half of the impatiens seedlings (20 plants), after the acclimation period in the greenhouse, were exposed to drought for a period of five days, while the second half was not (20 plants were regularly watered). The results of the study showed that the exposure of impatiens seedlings to drought increased the activity of enzymatic components, total phenolics and flavonoids contents and total antioxidant capacity of leaves. Greater exposure of impatiens to drought (in the observed period) implied a higher plant enzymatic and non-enzymatic antioxidant defence system activity. These results confirm that impatiens has evolved both enzymatic and non-enzymatic antioxidant defence mechanisms to adapt and survive the short-term drought exposure.


Author Biographies

Anamarija MATIJEVIĆ, Faculty of Agriculture and Food Sciences University of Sarajevo

Department of Plant Physiology

Ajla ŠAKONJIĆ, Faculty of Agriculture and Food Sciences University of Sarajevo

Department of Plant Physiology

Senad MURTIĆ, Department of Plant Physiology, Faculty of Agriculture and Food Sciences University of Sarajevo

Department of Plant Physiology

References

Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46, 27–34. https://doi.org/10.17221/67/2009-CJGPB

Aebi, M. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171(3), 382–388. https://doi.org/10.1016/j.plantsci.2006.04.009

Antonić, D., Milošević, S., Cingel, A., Lojić, M., Trifunović-Momčilov, M., Petrić, M., Subotić, A., Simonović, A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. South African Journal of Botany, 105, 226–233. https://doi.org/10.1016/j.sajb.2016.04.002

Basu, S., Roychoudhury, A., Saha, P.P, Sengupta D.N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60(1), 51–59. https://doi.org/10.1007/s10725-009-9418-4

Benzie, I.F., & Strain, J.J. (1996). Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292

Berwal, M.K. & Ram, C. (2018). Superoxide Dismutase: A Stable Biochemical Marker for Abiotic Stress Tolerance in Higher Plants. In A. B. De Oliveira (Ed), Abiotic and Biotic Stress in Plants. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.82079

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999

Chance, B., & Maehly A.C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8

Chugh, V, Kaur, N, Grewal, M.S., Gupta, A.K. (2013). Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Indian Journal of Biochemistry and Biophysics, 50(2), 150–158.

Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M., Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11, 163. https://doi.org/10.1186/1471-2229-11-163

Dibacto, R.E.K., Tchuente,B.R.T., Nguedjo, M.W., Tientcheu, Y.M.T., Nyobe, E. C., Edoun, F.L.E., Kamini, M.F.G., Dibanda, R.F., Medoua, G.N. (2021): Total polyphenol and flavonoid content and antioxidant capacity of some varieties of Persea americana peels consumed in Cameroon. Scientific World Journal, 2021, e8882594. https://doi.org/10.1155/2021/8882594

Fahad, S., Bajwa. A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, C., Wang, D., Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, e1147. https://doi.org/10.3389/fpls.2017.01147

Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Hasanuzzaman, M., Bhuyan, M., Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384

Kasote, D.M., Katyare, S.S., Hegde, M.V., Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. https://doi.org/10.7150/ijbs.12096

Kim, Y.H., Khan, A.L., Kim, D.H., Lee, S.Y., Kim, K.M., Waqas, M., Jung, H.Y., Shin, J.H., Kim, J.G., Lee, I.J. (2014). Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biology, 14, 13. https://doi.org/10.1186/1471-2229-14-13

Liang, T., Yue, W., Li, Q. (2010): Comparison of the phenolic content and antioxidant activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative species. International Journal of Molecular Sciences, 11(11):4452–4464. https://doi.org/10.3390/ijms11114452

Mehla, N., Sindhi, V., Josula, D., Bisht, P., Wani, S.H. (2017). An introduction to antioxidants and their roles in plant stress tolerance. In M. I. R. Khan & N. A. Khan (Eds.), Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (pp. 1–23). Singapure, SG: Springer. https://doi.org/10.1007/978-981-10-5254-5_1

Nakano, Y., & Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Ough, C.S., & Amerine, M.A. (1988). Methods for Analysis of Musts and Wines (pp. 196–221). New York, NY: John Wiley & Sons.

Sabzmeydani, E., Sedaghathoor, S., Hashemabadi, D. (2021). Effect of salicylic acid and progesterone on physiological characteristics of Kentucky bluegrass under salinity stress. Revista de Ciencias Agrícolas, 38(1), 111–124. https://doi.org/10.22267/rcia.213801.151

Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 10(1), 18. https://doi.org/10.3390/plants10010118

Schomburg, I, Jeske, L, Ulbrich, M, Placzek, S., Chang, A., Schomburg, D. (2017). The BRENDA enzyme information system–from a database to an expert system. Journal of Biotechnology 261, 194–206. https://doi.org/10.1016/j.jbiotec.2017.04.020

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules (Basel, Switzerland), 24(13), 2452. https://doi.org/10.3390/molecules24132452

Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, e217037. https://doi.org/10.1155/2012/217037

Smejkal G.B., & Kakumanu S. (2019). Enzymes and their turnover numbers. Expert Review of Proteomics, 16(7), 543–544. https://doi.org/10.1080/14789450.2019.1630275

Smirnoff, N., & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221(3), 1197–1214. https://doi.org/10.1111/nph.15488

Tola, A.J., Jaballi, A., Missihoun, T.D. (2021). Protein carbonylation: Emerging roles in plant redox biology and future prospects. Plants, 10(7), e1451. https://doi.org/10.3390/plants10071451

Wang, X, Liu, H, Yu, F, Hu, B, Jia, Y, Sha, H, Zhao, H. (2019). Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports 9(1), 8543. https://doi.org/10.1038/s41598-019-44958-x

Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D., Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO journal, 16(16), 4806–4816. https://doi.org/10.1093/emboj/16.16.4806

Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

Downloads

Published

30.12.2022

How to Cite

MATIJEVIĆ, A., ŠAKONJIĆ, A., & MURTIĆ, S. (2022). Antioxidant response of Impatiens walleriana L. to drought. Acta Agriculturae Slovenica, 118(4), 1–7. https://doi.org/10.14720/aas.2022.118.4.2438

Issue

Section

Original Scientific Article

Most read articles by the same author(s)