Effects of high vitamin and micro-mineral supplementation on growth performance and pork quality of finishing pigs under heat stress

Authors

  • Arth David Sol Valmoria ORTEGA University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Nutrition and Physiology, Debrecen, Hungary
  • László BABINSZKY University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Nutrition and Physiology, Debrecen, Hungary
  • Zsófia RÓZSÁNÉ-VÁRSZEGI University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Science, Debrecen, Hungary
  • Xénia Erika OZSVÁTH University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Science, Debrecen, Hungary
  • Ogonji Humphrey ORIEDO Department of Agriculture, Livestock and Food Security, Veterinary services section, Country Government of Makueni, 78-90300, Kenya
  • János OLÁH University of Debrecen, Institute for Agricultural Research and Educational Farm, Kismacs Experimental Station of Animal Husbandry, Debrecen, Hungary
  • Csaba SZABÓ University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Nutrition and Physiology, Debrecen, Hungary

DOI:

https://doi.org/10.14720/aas.2022.118.4.2808

Keywords:

pigs, animal nutrition, heat stress, feed additives, vitamins, micro-minerals, growth performance, meat quality

Abstract

The objective of this study was to determine the effects of heat stress (HS) on the production performance of fattening pigs and whether the supplementation of vitamins (C and E) and micro-minerals (Se and Zn) at increased concentrations can mitigate HS adverse effects. Thirty six Danbred hybrid barrows (65.1 ± 2.81 kg) were randomly distributed into four treatments 1) HS (28.9 ± 0.9 °C, RH- 60.4 ± 4.3 %) + control diet (HC), 2) HS + diet 1 (HT1), 3) HS + diet 2 (HT2), and 4) thermo-neutral conditions (19.5 ± 0.9 °C, RH- 85.9 ± 7.3 %) + control diet (TC). Bodyweight and feed intake were measured weekly for four weeks. After the experiment, six pigs from each treatment were slaughtered, and the longissimus lumborum muscle was sampled to evaluate meat quality. At week four, HS significantly affected pig body weight (< 0.05). However, the other parameters were not significantly affected by HS,while slight improvements in these parameters were observed by supplementing vitamins and micro-minerals in the diet of the pigs despite exposure to HS. Therefore, the pigs used in the study showed resilience to adverse effects of HS on growth and meat quality parameters. The content of vitamins C and E and microminerals Se and Zn in the diet seems to play an important role in resilience to HS, therefore their requirement and supplementation should be carefully evaluated.

Author Biographies

  • Arth David Sol Valmoria ORTEGA, University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Nutrition and Physiology, Debrecen, Hungary
    PhD student, University of Debrecen, Doctoral School of Animal Science
  • Xénia Erika OZSVÁTH, University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature, Department of Animal Science, Debrecen, Hungary
    University of Debrecen, Doctoral School of Animal Science

References

Archile-Contreras, A. C., & Purslow, P. P. (2011). Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Research International, 44(2), 582–588. https://doi.org/10.1016/j.foodres.2010.12.002 DOI: https://doi.org/10.1016/j.foodres.2010.12.002

Babinszky, L., Horváth, M., Remenyik, J., Verstegen, M. W. A. (2019). The adverse effects of heat stress on the antioxidant status and performance of pigs and poultry and reducing these effects with nutritional tools (Chapter 8). In: W. H. Hendriks, M. W. A. Verstegen & L. Babinszky (Eds.), Poultry and pig nutrition, Challenges of the 21st century (pp. 187–208). Wageningen: Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-884-1_8 DOI: https://doi.org/10.3920/978-90-8686-884-1_8

Brown-Brandl, T. M., Eigenberg, R. A., Nienaber, J. A., & Kachman, S. D. (2001). Thermoregulatory profile of a newer genetic line of pigs. Livestock production science, 71(2–3), 253–260. https://doi.org/10.1016/S0301-6226(01)00184-1 DOI: https://doi.org/10.1016/S0301-6226(01)00184-1

Brown-Brandl, T. M., Nienaber, J. A., Xin, H., & Gates, R. S. (2004). A literature review of swine heat production. Transactions of the ASAE, 47(1), 259. https://doi.org/10.13031/2013.15867 DOI: https://doi.org/10.13031/2013.15867

Campos, P. H. R. F., Floc’h, L., Noblet, J., & Renaudeau, D. (2017). Physiological responses of growing pigs to high ambient temperature and/or inflammatory challenges. RevistaBrasileira de Zootecnia, 46, 537–544. https://doi.org/10.1590/s1806-92902017000600009 DOI: https://doi.org/10.1590/s1806-92902017000600009

Cervantes, M., Cota, M., Arce, N., Castillo, G., Avelar, E., Espinoza, S., & Morales, A. (2016). Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs. Journal of thermal biology, 59, 69–76. https://doi.org/10.1016/j.jtherbio.2016.04.014 DOI: https://doi.org/10.1016/j.jtherbio.2016.04.014

Chauhan, S. S., Dunshea, F. R., Plozza, T. E., Hopkins, D. L., & Ponnampalam, E. N. (2020). The Impact of Antioxidant Supplementation and Heat Stress on Carcass Characteristics, Muscle Nutritional Profile and Functionality of Lamb Meat. Animals: an open access journal from MDPI, 10(8), 1286. https://doi.org/10.3390/ani10081286 DOI: https://doi.org/10.3390/ani10081286

Cottrell, J. J., Liu, F., Hung, A. T., DiGiacomo, K., Chauhan, S. S., Leury, B. J., ... Dunshea, F. R. (2015). Nutritional strategies to alleviate heat stress in pigs. Animal Production Science, 55(12), 1391–1402. https://doi.org/10.1071/AN15255 DOI: https://doi.org/10.1071/AN15255

Cruzen, S. M., Boddicker, R. L., Graves, K. L., Johnson, T. P., Arkfeld, E. K., Baumgard, L. H., ... Lonergan, S. M. (2015). Carcass composition of market weight pigs subjected to heat stress in utero and during finishing. Journal of animal science, 93(5), 2587–2596. https://doi.org/10.2527/jas.2014-8347 DOI: https://doi.org/10.2527/jas.2014-8347

Cui, Y., Wang, C., Hao, Y., Gu, X., & Wang, H. (2019). Chronic Heat Stress Induces Acute Phase Responses and Serum Metabolome Changes in Finishing Pigs. Animals: an open access journal from MDPI, 9(7), 395. https://doi.org/10.3390/ani9070395 DOI: https://doi.org/10.3390/ani9070395

da Fonseca de Oliveira, A. C., Vanelli, K., Sotomaior, C. S., Weber, S. H., & Costa, L. B. (2019). Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Veterinary research communications, 43(1), 37–43. https://doi.org/10.1007/s11259-018-9741-1 DOI: https://doi.org/10.1007/s11259-018-9741-1

FAO (2016). Climate Change and Food Security: Risks and Responses (Food and Agriculture Organization of the United Nations (FAO)). Retrieved from http://www.fao.org/3/i5188e/i5188e.pdf

González de Vega, R., García, M., Fernández-Sánchez, M. L., González-Iglesias, H., & Sanz-Medel, A. (2018). Protective effect of selenium supplementation following oxidative stress mediated by glucose on retinal pigment epithelium. Metallomics: integrated biometal science, 10(1), 83–92. https://doi.org/10.1039/C7MT00209B DOI: https://doi.org/10.1039/C7MT00209B

Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., & Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat science, 162, 108025. https://doi.org/10.1016/j.meatsci.2019.108025 DOI: https://doi.org/10.1016/j.meatsci.2019.108025

Goo, D., Kim, J. H., Park, G. H., Delos Reyes, J. B., & Kil, D. Y. (2019). Effect of Heat Stress and Stocking Density on Growth Performance, Breast Meat Quality, and Intestinal Barrier Function in Broiler Chickens. Animals: an open access journal from MDPI, 9(3), 107. https://doi.org/10.3390/ani9030107 DOI: https://doi.org/10.3390/ani9030107

Gregory, N. G. (2010). How climatic changes could affect meat quality. Food Research International, 43(7), 1866–1873. https://doi.org/10.1016/j.foodres.2009.05.018 DOI: https://doi.org/10.1016/j.foodres.2009.05.018

Huff Lonergan, E., Zhang, W., & Lonergan, S. M. (2010). Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Meat science, 86(1), 184–195. https://doi.org/10.1016/j.meatsci.2010.05.004 DOI: https://doi.org/10.1016/j.meatsci.2010.05.004

Jankowiak, H., Cebulska, A., & Bocian, M. (2021). The relationship between acidification (pH) and meat quality traits of polish white breed pigs. European Food Research and Technology, 247(11), 2813–2820. https://doi.org/10.1007/s00217-021-03837-4 DOI: https://doi.org/10.1007/s00217-021-03837-4

Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κBsignaling. Inflammopharmacology, 25(1), 11–24. https://doi.org/10.1007/s10787-017-0309-4 DOI: https://doi.org/10.1007/s10787-017-0309-4

Kellner, T. A., Baumgard, L. H., Prusa, K. J., Gabler, N. K., & Patience, J. F. (2016). Does heat stress alter the pig’s response to dietary fat? Journal of animal science, 94(11), 4688–4703. https://doi.org/10.2527/jas.2016-0756 DOI: https://doi.org/10.2527/jas.2016-0756

Kiełczykowska, M., Kocot, J., Paździor, M., & Musik, I. (2018). Selenium - a fascinating antioxidant of protective properties. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 27(2), 245–255. https://doi.org/10.17219/acem/67222 DOI: https://doi.org/10.17219/acem/67222

Kim, T. W., Kim, C. W., Yang, M. R., No, G. R., Kim, S. W., & Kim, I. S. (2016). Pork Quality Traits According to Postmortem pH and Temperature in Berkshire. Korean journal for food science of animal resources, 36(1), 29–36. https://doi.org/10.5851/kosfa.2016.36.1.29 DOI: https://doi.org/10.5851/kosfa.2016.36.1.29

Klont, R. (2005). Influence of Ultimate pH on Meat Quality and Consumer Purchasing Decisions. Retrieved from https://www.thepigsite.com/articles/influence-of-ultimate-ph-on-meat-quality-and-consumer-purchasing-decisions#:~:text=The%20highest%20quality%20products%20tend,into%20lactic%20acid%20after%20slaughter

Lehotayová, A., Bučko, O., Petrák, J., Mrázová, J., & Debrecéni, O. (2012). Effect of high ambient temperature on meat quality of pigs. Research in Pig Breeding, 6(2), 37–40. Retrived from https://www.researchgate.net/profile/Andrea_Lehotayova/publication/295546165_Effect_of_high_ambient_temperature_on_meat_quality_of_pigs/links/5819998e08aee7cdc6860992/Effect-of-high-ambient-temperature-on-meat-quality-of-pigs.pdf

Liu, F., Cottrell, J. J., Furness, J. B., Rivera, L. R., Kelly, F. W., Wijesiriwardana, U., ... Dunshea, F. R. (2016). Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Experimental physiology, 101(7), 801–810. https://doi.org/10.1113/EP085746 DOI: https://doi.org/10.1113/EP085746

Liu, Y., Yin, S., Tang, J., Liu, Y., Jia, G., Liu, G., ... Zhao, H. (2021). Hydroxy Selenomethionine Improves Meat Quality through Optimal Skeletal Metabolism and Functions of Selenoproteins of Pigs under Chronic Heat Stress. Antioxidants (Basel, Switzerland), 10(10), 1558. https://doi.org/10.3390/antiox10101558 DOI: https://doi.org/10.3390/antiox10101558

Lv, C. H., Wang, T., Regmi, N., Chen, X., Huang, K., & Liao, S. F. (2015). Effects of dietary supplementation of selenium-enriched probiotics on production performance and intestinal microbiota of weanling piglets raised under high ambient temperature. Journal of animal physiology and animal nutrition, 99(6), 1161–1171. https://doi.org/10.1111/jpn.12326 DOI: https://doi.org/10.1111/jpn.12326

Ma, X., Wang, L., Shi, Z., Chen, W., Yang, X., Hu, Y., ... Jiang, Z. (2019). Mechanism of continuous high temperature affecting growth performance, meat quality, and muscle biochemical properties of finishing pigs. Genes & nutrition, 14, 23. https://doi.org/10.1186/s12263-019-0643-9 DOI: https://doi.org/10.1186/s12263-019-0643-9

Mani, V., Rubach, J. K., Sanders, D. J., Pham, T., Koltes, D. A., Gabler, N. K., & Poss, M. J. (2019). Evaluation of the protective effects of zinc butyrate in IPEC-J2 cells and grower pigs under heat stress. Translational animal science, 3(2), 842–854. https://doi.org/10.1093/tas/txz023 DOI: https://doi.org/10.1093/tas/txz023

Mayorga, E. J., Kvidera, S. K., Horst, E. A., Al-Qaisi, M., Dickson, M. J., Seibert, J. T., ... Baumgard, L. H. (2018). Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. Journal of animal science, 96(10), 4173–4185. https://doi.org/10.1093/jas/sky293 DOI: https://doi.org/10.1093/jas/sky293

Morales, A., Grageola, F., García, H., Arce, N., Araiza, B., Yáñez, J., & Cervantes, M. (2014). Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures. Journal of animal physiology and animal nutrition, 98(5), 928–935. https://doi.org/10.1111/jpn.12161 DOI: https://doi.org/10.1111/jpn.12161

Mun, H. S., Rathnayake, D., Dilawar, M. A., Jeong, M. G., & Yang, C. J. (2022). Effect of ambient temperature on growth performances, carcass traits and meat quality of pigs. Journal of Applied Animal Research, 50(1), 103–108. https://doi.org/10.1080/09712119.2022.2032084 DOI: https://doi.org/10.1080/09712119.2022.2032084

Pearce, S. C., Gabler, N. K., Ross, J. W., Escobar, J., Patience, J. F., Rhoads, R. P., & Baumgard, L. H. (2013). The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of animal science, 91(5), 2108–2118. https://doi.org/10.2527/jas.2012-5738 DOI: https://doi.org/10.2527/jas.2012-5738

Renaudeau, D., Anais, C., Tel, L., & Gourdine, J. L. (2010). Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function. Journal of animal science, 88(11), 3715–3724. https://doi.org/10.2527/jas.2009-2169 DOI: https://doi.org/10.2527/jas.2009-2169

Renaudeau, D., Collin, A., Yahav, S., de Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal: an international journal of animal bioscience, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448 DOI: https://doi.org/10.1017/S1751731111002448

Renaudeau, D., Frances, G., Dubois, S., Gilbert, H., & Noblet, J. (2013). Effect of thermal heat stress on energy utilization in two lines of pigs divergently selected for residual feed intake. Journal of animal science, 91(3), 1162–1175. https://doi.org/10.2527/jas.2012-5689 DOI: https://doi.org/10.2527/jas.2012-5689

Renaudeau, D., Gourdine, J. L., & St-Pierre, N. R. (2011). A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. Journal of animal science, 89(7), 2220–2230. https://doi.org/10.2527/jas.2010-3329 DOI: https://doi.org/10.2527/jas.2010-3329

Renaudeau, D., Kerdoncuff, M., Anaïs, C., & Gourdine, J. L. (2008). Effect of temperature level on thermal acclimation in Large White growing pigs. Animal: an international journal of animal bioscience, 2(11), 1619–1626. https://doi.org/10.1017/S1751731108002814 DOI: https://doi.org/10.1017/S1751731108002814

Rezar, V., Salobir, J., Levart, A., Tomažin, U., Škrlep, M., BatorekLukač, N., & Čandek-Potokar, M. (2017). Supplementing entire male pig diet with hydrolysable tannins: Effect on carcass traits, meat quality and oxidative stability. Meat science, 133, 95–102. https://doi.org/10.1016/j.meatsci.2017.06.012 DOI: https://doi.org/10.1016/j.meatsci.2017.06.012

Rhoads, R. P., Baumgard, L. H., Suagee, J. K., & Sanders, S. R. (2013). Nutritional interventions to alleviate the negative consequences of heat stress. Advances in nutrition, 4(3), 267–276. https://doi.org/10.3945/an.112.003376 DOI: https://doi.org/10.3945/an.112.003376

Romo-Valdez, J., Romo-Valdez, A., Montero-Pardo, A., Urías-Castro, C., Güémez-Gaxiola, H., & Romo-Rubio, J. (2019). Organic zinc supplementation and pigs productive performance in warm environment. Abanico Veterinario, 9(1), 1–9. https://doi.org/10.21929/abavet2019.926 DOI: https://doi.org/10.21929/abavet2019.926

Sanz Fernandez, M. V., Pearce, S. C., Gabler, N. K., Patience, J. F., Wilson, M. E., Socha, M. T., ... & Baumgard, L. H. (2014). Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal: an international journal of animal bioscience, 8(1), 43–50. https://doi.org/10.1017/S1751731113001961 DOI: https://doi.org/10.1017/S1751731113001961

Sanz Fernandez, M. V., Stoakes, S. K., Abuajamieh, M., Seibert, J. T., Johnson, J. S., Horst, E. A., ... Baumgard, L. H. (2015). Heat stress increases insulin sensitivity in pigs. Physiological Reports, 3(8), e12478. https://doi.org/10.14814/phy2.12478 DOI: https://doi.org/10.14814/phy2.12478

Shakeri, M., Cottrell, J. J., Wilkinson, S., Le, H. H., Suleria, H., Warner, R. D., & Dunshea, F. R. (2019). Growth Performance and Characterization of Meat Quality of Broiler Chickens Supplemented with Betaine and Antioxidants under Cyclic Heat Stress. Antioxidants (Basel, Switzerland), 8(9), 336. https://doi.org/10.3390/antiox8090336 DOI: https://doi.org/10.3390/antiox8090336

Shi, Z. B., Ma, X. Y., Zheng, C. T., Hu, Y. J., Yang, X. F., Gao, K. G., ... & Jiang, Z. Y. (2016). Effects of high ambient temperature on meat quality, serum hormone concentrations, and gene expression in the longissimus dorsi muscle of finishing pigs. Animal Production Science, 57(6), 1031–1039. https://doi.org/10.1071/AN15003 DOI: https://doi.org/10.1071/AN15003

Silva, V. A., Bertechini, A. G., Clemente, A., de Freitas, L., Nogueira, B., de Oliveira, B. L., & Ramos, A. (2019). Different levels of selenomethionine on the meat quality and selenium deposition in tissue of finishing pigs. Journal of animal physiology and animal nutrition, 103(6), 1866–1874. https://doi.org/10.1111/jpn.13179 DOI: https://doi.org/10.1111/jpn.13179

Slimen, I. B., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., & Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 30(7), 513–523. https://doi.org/10.3109/02656736.2014.971446 DOI: https://doi.org/10.3109/02656736.2014.971446

Song, R., Foster, D. N., & Shurson, G. C. (2011). Effects of feeding diets containing bacitracin methylene disalicylate to heat-stressed finishing pigs. Journal of animal science, 89(6), 1830–1843. https://doi.org/10.2527/jas.2010-3218 DOI: https://doi.org/10.2527/jas.2010-3218

Traber, M. G., & Stevens, J. F. (2011). Vitamins C and E: beneficial effects from a mechanistic perspective. Free radical biology & medicine, 51(5), 1000–1013. https://doi.org/10.1016/j.freeradbiomed.2011.05.017 DOI: https://doi.org/10.1016/j.freeradbiomed.2011.05.017

Traore, S., Aubry, L., Gatellier, P., Przybylski, W., Jaworska, D., Kajak-Siemaszko, K., & Santé-Lhoutellier, V. (2012). Higher drip loss is associated with protein oxidation. Meat science, 90(4), 917–924. https://doi.org/10.1016/j.meatsci.2011.11.033 DOI: https://doi.org/10.1016/j.meatsci.2011.11.033

Wang, F., & Zhang, J. (2019). Heat Stress Response to National-Committed Emission Reductions under the Paris Agreement. International journal of environmental research and public health, 16(12), 2202. https://doi.org/10.3390/ijerph16122202 DOI: https://doi.org/10.3390/ijerph16122202

Węglarz, A. (2010). Meat quality defined based on pH and colour depending on cattle category and slaughter season. Czech Journal of Animal Science, 55(12), 548–556. https://doi.org/10.17221/2520-CJAS DOI: https://doi.org/10.17221/2520-CJAS

Yang, P., Hao, Y., Feng, J., Lin, H., Feng, Y., Wu, X., ... Gu, X. (2014a). The Expression of Carnosine and Its Effect on the Antioxidant Capacity of Longissimus dorsi Muscle in Finishing Pigs Exposed to Constant Heat Stress. Asian-Australasian journal of animal sciences, 27(12), 1763–1772. https://doi.org/10.5713/ajas.2014.14063 DOI: https://doi.org/10.5713/ajas.2014.14063

Yang, P., Feng, Y., Hao, Y., Gu, X., Yang, C., & Cao, Z. (2014b). Effects of constant heat stress on performance, carcass traits, nutrition content and myofiber characteristics of Longissimus dorsi in finishing pigs. Chinese Journal of Animal Nutrition, 26(9), 2503–2512.

Zhang, Z. Y., Jia, G. Q., Zuo, J. J., Zhang, Y., Lei, J., Ren, L., & Feng, D. Y. (2012). Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poultry science, 91(11), 2931–2937. https://doi.org/10.3382/ps.2012-02255 DOI: https://doi.org/10.3382/ps.2012-02255

Downloads

Published

30. 12. 2022

Issue

Section

Original Scientific Article

How to Cite

ORTEGA, A. D. S. V., BABINSZKY, L., RÓZSÁNÉ-VÁRSZEGI, Z., OZSVÁTH, X. E., ORIEDO, O. H., OLÁH, J., & SZABÓ, C. (2022). Effects of high vitamin and micro-mineral supplementation on growth performance and pork quality of finishing pigs under heat stress. Acta Agriculturae Slovenica, 118(4), 1–10. https://doi.org/10.14720/aas.2022.118.4.2808