In vitro fermentation parameters and VFA production of non-structural carbohydrates in rabbits

Authors

  • Andrej LAVRENČIČ University of Ljubljana, Biotechical Faculty, Department of Animal Science, Domžale, Slovenia
  • Ajda KERMAUNER University of Ljubljana, Biotechical Faculty, Department of Animal Science, Domžale, Slovenia

DOI:

https://doi.org/10.14720/aas.2022.118.4.2778

Keywords:

rabbits, animal nutrition, in vitro fermentation, gas test, non-structural carbohydrates, sugars, non-starch polysaccharides, VFA

Abstract

Six pure non-structural carbohydrates (glucose, fructose, sucrose, β-glucan, chicory inulin (inulin-C) and inulin of undefined source (inulin-N)) were incubated anaerobically in the inoculum prepared from rabbit caecum content and the kinetic parameters of in vitro gas production (total potential gas production (B), maximum fermentation rate (MFR), time when MFR was reached (TMFR), lag phase (Lag), the amount of gas (Gas8) and fermentation rate at 8 hours of incubation (FR8)) and volatile fatty acids (VFA) production after 8 hours were determined. MFRs were the greatest and TMFRs the shortest with the fermentation of sugars: glucose (MFR 36.0 ml/h; TMFR 8.6 h), fructose (MFR 38.6 ml/h; TMFR 9.6 h) and sucrose (MFR 33.2 ml/h; TMFR 9.4 h). Fermentation was the lowest in β-glucan (MFR 12.5 ml/h; TMFR 15.3 h), while fermentation of the two inulins was very different: fermentation of inulin-N was intensive and fast and similar to sugars (MFR 32.3 ml/h; TMFR 8.3 h), while inulin-C fermented slowly and with low intensity (MFR 30.5 ml/h; TMFR 11.5 h). VFA production after 8 hours of incubation was the highest for simple sugars and inulin-N, low for inulin-C, and the lowest for β-glucan (p < 0.05). The molar proportion of acetic acid was lower in sugars and inulin-N than in inulin-C and β-glucan, which had the lowest molar proportion of butyric acid (p < 0.05)

References

Bai, J., Li, Y., Zhang, W., Fan, M., Qian, H., Zhang, H., …Wang, L. (2021a). Source of gut microbiota determines oat β-glucan degradation and short chain fatty acid-producing pathway. Food Bioscience, 41, 101010. https://doi.org/10.1016/j.fbio.2021.101010 DOI: https://doi.org/10.1016/j.fbio.2021.101010

Bai, J., Li, T., Zhang, W., Fan, M., Qian, H., Li, Y., Wang, L. (2021b). Systematic assessment of oat β-glucan catabolism during in vitro digestion and fermentation. Food Chemistry, 348, 129116. https://doi.org/10.1016/j.foodchem.2021.129116 DOI: https://doi.org/10.1016/j.foodchem.2021.129116

Belenguer, A., Fondevilla, M., Balcells, J., Abecia, L., Lachica, M, Carro, M. D. (2011). Methanogenesis in rabbit caecum as affected by the fermentation pattern - in vitro and in vivo measurements. World Rabbit Science, 19, 75–83. https://doi.org/10.4995/wrs.2011.826 DOI: https://doi.org/10.4995/wrs.2011.826

Calabro, S., Nizza, A., Pinna, W., Cutrignelli, M. I., Piccolo, V. (1999). Estimation of digestibility of compound diets for rabbits using the in vitro gas production technique. World Rabbit Science, 7, 197–201. https://doi.org/10.4995/wrs.1999.401 DOI: https://doi.org/10.4995/wrs.1999.401

Carabaño, R. Badiola, I., Licois, D., Gidenne, T. (2006). The digestive ecosystem and its control through nutritional or feeding strategies. V: L. Maertens in P. Coudert (ur.), Recent advances in rabbit sciences. (str. 211–227). Melle, ILVO. Pridobljeno s http://world-rabbit-science.com/Documents/Cost848.pdf

Castellini, C., Cardinali, R., Rebollar, P. G., Dal Bosco, A., Jimeno, V., Cossu, M. E. (2007). Feeding fresh chicory (Chicoria intybus) to young rabbits: Performance, development of gastro-intestinal tract and immune functions of appendix and Peyer’s patch. Animal Feed Science and Technology, 134(1–2), 56–65. https://doi.org/10.1016/j.anifeedsci.2006.05.007 DOI: https://doi.org/10.1016/j.anifeedsci.2006.05.007

De Arcangelis, E., Djurle, S., Andersson, A. A. M., Marconi, E., Messia, M. C., Andersson, R. (2019). Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science, 85, 175–181. https://doi.org/10.1016/j.jcs.2018.12.002 DOI: https://doi.org/10.1016/j.jcs.2018.12.002

Ferreira, F. N. A., Ferreira, W. M., Inácio, D. F. S., Silva Neta, C. S., Mota, K. C. N., Costa Júnior, M. B., … Caicedo, W. O. (2019). In vitro digestion and fermentation characteristics of tropical ingredients, co-products and by-products with potential use in diets for rabbits. Animal Feed Science and Technology, 252, 1–10. https://doi.org/10.1016/j.anifeedsci.2019.03.011 DOI: https://doi.org/10.1016/j.anifeedsci.2019.03.011

Fortun-Lamothe, L., Gidenne, T. (2006). Recent advances in the digestive physiology of the growing rabbit. V: L. Maertens in P. Coudert (ur.), Recent advances in rabbit sciences (str. 202–210). Melle, ILVO. Pridobljeno s http://world-rabbit-science.com/Documents/Cost848.pdf

Gidenne, T. (1997). Ceaco-colic digestion in the growing rabbit: impact of nutritional factors and related disturbances. Livestock Production Science, 51, 73–88. https://doi.org/10.1016/S0301-6226(97)00111-5 DOI: https://doi.org/10.1016/S0301-6226(97)00111-5

Gidenne, T., Jehl, N., Segura, M., Michalet-Doreau, B. (2002). Microbial activity in the caecum of the rabbit around weaning: impact of a dietary fibre deficiency and of intake level. Animal Feed Science and Technology, 99, 107–118. https://doi.org/10.1016/S0377-8401(02)00138-4 DOI: https://doi.org/10.1016/S0377-8401(02)00138-4

Gidenne, T., Lebas, F., Licois, D., Garcia, J. (2020). Nutrition and feeding strategy: impacts on health status. V: C. de Blas in J. Wiseman (ur.), Nutrition of the rabbit (str. 193–221), 3rd edition. CAB International. Pridobljeno s https://hal.inrae.fr/hal-02569293/file/2020.Rabbit.Nutr%283rd.ed%29chap10%28nutrition%2Bfeed%2Bhealth%3DTG%29.pdf DOI: https://doi.org/10.1079/9781789241273.0193

Holdeman, L. V., Cato, E. P., Moore, W. E. C. (1977). Ether extraction of volatile fatty acids. V: Anaerobe laboratory manual (str. 1–132), 4th edition. Virginia: Southern Printing Company.

Hughes, S. A., Shewry, P. R., Gibson, G. R., McCleary, B. V., Rastall, R. A. (2008). In vitro fermentation of oat and barley derived b-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 64(3), 482–493. https://doi.org/10.1111/j.1574-6941.2008.00478.x DOI: https://doi.org/10.1111/j.1574-6941.2008.00478.x

Jha, R., Rossnagel, B., Pieper, R., Van Kessel, A., Leterme, P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4(5), 724–731. https://doi.org/10.1017/s1751731109991510 DOI: https://doi.org/10.1017/S1751731109991510

Karppinen, S., Liukkonen, K., Aura, A.-M., Forssell, P., Poutainen, K. (2000). In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. Journal of the Science of Food and Agriculture, 80, 1469–1476. https://doi.org/10.1002/1097-0010(200008)80:10<1469::AID-JSFA675>3.0.CO;2-A DOI: https://doi.org/10.1002/1097-0010(200008)80:10<1469::AID-JSFA675>3.0.CO;2-A

Kaur, A., Rose, D. J., Rumpagaporn, P., Patterson, J. A., Hamaker, B. R. (2011). In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using “slowly fermentable” dietary fibers. Journal of Food Science, 76(5), H137–H142. https://doi.org/10.1111/j.1750-3841.2011.02172.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02172.x

Kaur, R., Sharma, M., Ji, D., Xu, M., Agyei, D. (2020). Structural features, modification, and functionalities of β-glucan. Fibers, 8(1), 1–30. https://doi.org/10.3390/fib8010001 DOI: https://doi.org/10.3390/fib8010001

Kermauner, A., Lavrenčič, A. (2008a). Supplementation of rabbit diet with chestnut wood extract: effect on in vitro gas production from three sources of carbohydrates. V: Proc.: 9th World Rabbit Congress, 2008–06–10/13, Verona, Italy: 683–387. Pridobljeno s http://world-rabbit-science.com/WRSA-Proceedings/Congress-2008-Verona/Papers/N-Kermauner1.pdf

Kermauner, A., Lavrenčič, A. (2008b). Supplementation of rabbit diet with chestnut wood extract: effect on in vitro gas production from two sources of protein. V: Proc. 9th World Rabbit Congress, 2008–06–10/13, Verona, Italy: 689–693. Pridobljeno s http://world-rabbit-science.com/WRSA-Proceedings/Congress-2008-Verona/Papers/N-Kermauner2.pdf

Kermauner, A., Lavrenčič, A. (2010). In vitro fermentation of different commercially available pectins using inoculum from rabbit caecum. World Rabbit Science, 18, 1–7. Pridobljeno s http://ojs.upv.es/index.php/wrs/article/view/671 DOI: https://doi.org/10.4995/WRS.2010.18.01

Kermauner, A., Lavrenčič, A. (2011). In vitro SCFA production in most common rabbit feedstuffs. V: S. Hoy (ur.), 17. Internationale Tagung über Haltung und Krankheiten der Kaninchen, Pelztiere und Heimtiere (str. 126–137). Celle, 11.–12. Mai 2011. Gießen: VVB Laufersweiler Verlag. Pridobljeno s https://www.researchgate.net/publication/360890480_In_vitro_SCFA_production_in_most_common_rabbit_feedstuffs

Kermauner, A., Lavrenčič, A. (2012). The in vitro caecal fermentation of different starch sources in rabbits. V: P. Dovč in N. Petrič (ur.), Acta agriculturae Slovenica, Supplement 3: 20th International Symposium Animal Science days: Livestock production as a technological and social challenge (str. 71–75). Ljubljana: Univerza v Ljubljani, Biotehniška fakulteta. Pridobljeno s http://aas.bf.uni-lj.si/zootehnika/supl/3-2012/PDF/3-2012-71-75.pdf

Kermauner, A., Štruklec, M., Marinšek Logar, M. (1996). Addition of probiotic to feed with different energy and ADF content in rabbits. 2. Effect on microbial metabolism in the caecum. World Rabbit Science, 4, 195–200. https://doi.org/10.4995/wrs.1996.294 DOI: https://doi.org/10.4995/wrs.1996.294

Lavrenčič, A. (2007). The effect of rabbit age on in vitro caecal fermentation of starch, pectin, xylan, cellulose, compound feed and its fibre. Animal, 1: 241–248. https://doi.org/10.1017/S1751731107303467 DOI: https://doi.org/10.1017/S1751731107303467

Lavrenčič, A., Stefanon, B., Susmel, P. (1997). An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science, 64(3), 423–431. https://doi.org/10.1017/S1357729800016027 DOI: https://doi.org/10.1017/S1357729800016027

Lu, S., Flanagan, B. M., Williams, B. A., Mikkelsen, D., Gidley, M. J. (2020). Cell wall architecture as well as chemical composition determines fermentation of wheat cell walls by a faecal inoculum. Food Hydrocolloids, 107, 105858. https://doi.org/10.1016/j.foodhyd.2020.105858 DOI: https://doi.org/10.1016/j.foodhyd.2020.105858

Lu, S., Williams, B. A., Flanagan, B. M., Yao, H., Mikkelsen, D., Gidley, M. J. (2021). Fermentation outcomes of wheat cell wall related polysaccharides are driven by substrate effects as well as initial faecal inoculum. Food Hydrocolloids, 120, 106978. https://doi.org/10.1016/j.foodhyd.2021.106978 DOI: https://doi.org/10.1016/j.foodhyd.2021.106978

Maertens, L., Aerts, J. M., De Boever, J. (2004). Degradation of dietary oligofructose and inulin in the gastro-intestinal tract of the rabbit and the effects on caecal pH and volatile fatty acids. World Rabbit Science, 12, 235–246. https://doi.org/10.4995/wrs.2004.569 DOI: https://doi.org/10.4995/wrs.2004.569

Marounek, M., Brezina, P., Baran, M. (2000). Fermentation of carbohydrates and yield of microbial protein in mixed cultures of rabbit caecal microorganisms. Arch. Anim. Nutr., 53, 241–252. https://doi.org/10.1080/17450390009381950 DOI: https://doi.org/10.1080/17450390009381950

Marounek, M., Vovk, S. J., Benda, V. (1997). Fermentation patterns in rabbit caecal cultures supplied with plant polysaccharides and lactate. Acta Veterinaria Brno, 67, 9–13. https://doi.org/10.2754/avb199766010009 DOI: https://doi.org/10.2754/avb199766010009

Menke, K. H., Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 375–386.

Ocasio-Vega, C., Abad-Guamán, R., Delgado, R., Carabaño, R., Carro, M. D., García, J. (2018). In vitro caecal fermentation of carbohydrate-rich feedstuffs in rabbits as affected by substrate pre-digestion and donors’ diet. World Rabbit Science, 26, 15–25. https://doi.org/10.4995/wrs.2018.7854 DOI: https://doi.org/10.4995/wrs.2018.7854

Pellikaan, W. F., Verdonk, J. M. A. J, Shim, S. B., Vestegen, M. W. A. (2007). Adaptive capacity of faecal microbiota from piglets receiving diets with different types of inulin-type fructans. Livestock Science, 108, 178–181. https://doi.org/10.1016/j.livsci.2007.01.087 DOI: https://doi.org/10.1016/j.livsci.2007.01.087

Salvador, V., Cherbut, C., Barry, J. L. Bertrand, D., Bonnet, C., Delortlaval, J. (1993). Sugar composition of dietary fibre and short chain fatty acid production during in vitro fermentation of human bacteria. British Journal of Nutrition, 70, 189–197. Pridobljeno s https://www.academia.edu/72576840/Sugar_composition_of_dietary_fibre_and_short_chain_fatty_acid_production_during_in_vitro_fermentation_by_human_bacteria?email_work_card=view-paper&li=5 DOI: https://doi.org/10.1079/BJN19930116

SAS Institute Inc. (2015). SAS/STAT user’s guide: Statistics. Version 9.4. Cary, NC, USA: SAS Institute Inc.

Slovakova L., Duškova D., Marounek M. (2002). Fermentation of pectin and glucose and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bifidobacterium pseudolongum. Lett. Appl. Microb., 35, 126–130. https://doi.org/10.1046/j.1472-765X.2002.01159.x DOI: https://doi.org/10.1046/j.1472-765X.2002.01159.x

Tawfick, M. M., Xie H., Zhao, C., Shao, P., Farag, M. A. (2022). Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. International Journal of Biological Macromolecules, 208, 948–961. https://doi.org/10.1016/j.ijbiomac.2022.03.218 DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.218

Venkateswaran, K., Hattori, N., La Duc, M. T., Kern, R. (2003). ATP as a biomarker of viable microorganisms in clean room facilities. Journal of Microbiological Methods, 52, 367–377. https://doi.org/10.1016/S0167-7012(02)00192-6 DOI: https://doi.org/10.1016/S0167-7012(02)00192-6

Villamide, M. J., Carabaño, R., Maertens, L., Pascual, J., Gidenne, T., Falcao-e-Cunha, L., Xiccato, G. (2009). Prediction of the nutritional value of European compound feeds for rabbits by chemical components and in vitro analysis. Animal Feed Science and Technology, 150, 283–294. https://doi.org/10.1016/j.anifeedsci.2008.09.007 DOI: https://doi.org/10.1016/j.anifeedsci.2008.09.007

Volek, Z., Marounek, M. (2011). Dried chicory root (Cichorium intybus L.) as a natural fructan source in rabbit diet: effects on growth performance, digestion and caecal and carcass traits. World Rabbit Science, 19, 143–150. https://doi.org/10.4995/wrs.2011.850 DOI: https://doi.org/10.4995/wrs.2011.850

Volek, Z., Marounek, M., Skrivanova, V. (2007). Effect of a starter diet supplementation with mannanoligosaccharide or inulin on health status, caecal metabolism, digestibility of nutrients and growth of early weaned rabbits. Animal, 1, 523–530. https://doi.org/10.1017/S1751731107685012 DOI: https://doi.org/10.1017/S1751731107685012

Williams, B. A., Bosch, M. W., Boer, H., Verstegen, M. W. A., Tamminga, S. (2005). An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Animal Feed Science and Technology, 123–124, 445–462. https://doi.org/10.1016/j.anifeedsci.2005.04.031 DOI: https://doi.org/10.1016/j.anifeedsci.2005.04.031

Williams, B. A., Verstegen, M. W. A., Tamminga, S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews, 14, 207–227. https://doi.org/10.1079/NRR200127 DOI: https://doi.org/10.1079/NRR200127

Yang, H. J., Cao, Y. C., Zhang, D. F. (2010). Caecal fermentation patterns in vitro of glucose, cellobiose, microcrystalline cellulose and NDF separated from alfalfa hay in the adult rabbit. Animal Feed Science and Technology, 162, 149–154. https://doi.org/10.1016/j.anifeedsci.2010.09.008 DOI: https://doi.org/10.1016/j.anifeedsci.2010.09.008

Published

30. 12. 2022

Issue

Section

Original Scientific Article

How to Cite

LAVRENČIČ, A., & KERMAUNER, A. (2022). In vitro fermentation parameters and VFA production of non-structural carbohydrates in rabbits. Acta Agriculturae Slovenica, 118(4), 1–9. https://doi.org/10.14720/aas.2022.118.4.2778

Most read articles by the same author(s)

1 2 > >>