In vitro fermentation parameters and VFA production of non-structural carbohydrates in rabbits


  • Andrej LAVRENČIČ University of Ljubljana, Biotechical Faculty, Department of Animal Science, Domžale, Slovenia
  • Ajda KERMAUNER University of Ljubljana, Biotechical Faculty, Department of Animal Science, Domžale, Slovenia



rabbits, animal nutrition, in vitro fermentation, gas test, non-structural carbohydrates, sugars, non-starch polysaccharides, VFA


Six pure non-structural carbohydrates (glucose, fructose, sucrose, β-glucan, chicory inulin (inulin-C) and inulin of undefined source (inulin-N)) were incubated anaerobically in the inoculum prepared from rabbit caecum content and the kinetic parameters of in vitro gas production (total potential gas production (B), maximum fermentation rate (MFR), time when MFR was reached (TMFR), lag phase (Lag), the amount of gas (Gas8) and fermentation rate at 8 hours of incubation (FR8)) and volatile fatty acids (VFA) production after 8 hours were determined. MFRs were the greatest and TMFRs the shortest with the fermentation of sugars: glucose (MFR 36.0 ml/h; TMFR 8.6 h), fructose (MFR 38.6 ml/h; TMFR 9.6 h) and sucrose (MFR 33.2 ml/h; TMFR 9.4 h). Fermentation was the lowest in β-glucan (MFR 12.5 ml/h; TMFR 15.3 h), while fermentation of the two inulins was very different: fermentation of inulin-N was intensive and fast and similar to sugars (MFR 32.3 ml/h; TMFR 8.3 h), while inulin-C fermented slowly and with low intensity (MFR 30.5 ml/h; TMFR 11.5 h). VFA production after 8 hours of incubation was the highest for simple sugars and inulin-N, low for inulin-C, and the lowest for β-glucan (p < 0.05). The molar proportion of acetic acid was lower in sugars and inulin-N than in inulin-C and β-glucan, which had the lowest molar proportion of butyric acid (p < 0.05)


Bai, J., Li, Y., Zhang, W., Fan, M., Qian, H., Zhang, H., …Wang, L. (2021a). Source of gut microbiota determines oat β-glucan degradation and short chain fatty acid-producing pathway. Food Bioscience, 41, 101010.

Bai, J., Li, T., Zhang, W., Fan, M., Qian, H., Li, Y., Wang, L. (2021b). Systematic assessment of oat β-glucan catabolism during in vitro digestion and fermentation. Food Chemistry, 348, 129116.

Belenguer, A., Fondevilla, M., Balcells, J., Abecia, L., Lachica, M, Carro, M. D. (2011). Methanogenesis in rabbit caecum as affected by the fermentation pattern - in vitro and in vivo measurements. World Rabbit Science, 19, 75–83.

Calabro, S., Nizza, A., Pinna, W., Cutrignelli, M. I., Piccolo, V. (1999). Estimation of digestibility of compound diets for rabbits using the in vitro gas production technique. World Rabbit Science, 7, 197–201.

Carabaño, R. Badiola, I., Licois, D., Gidenne, T. (2006). The digestive ecosystem and its control through nutritional or feeding strategies. V: L. Maertens in P. Coudert (ur.), Recent advances in rabbit sciences. (str. 211–227). Melle, ILVO. Pridobljeno s

Castellini, C., Cardinali, R., Rebollar, P. G., Dal Bosco, A., Jimeno, V., Cossu, M. E. (2007). Feeding fresh chicory (Chicoria intybus) to young rabbits: Performance, development of gastro-intestinal tract and immune functions of appendix and Peyer’s patch. Animal Feed Science and Technology, 134(1–2), 56–65.

De Arcangelis, E., Djurle, S., Andersson, A. A. M., Marconi, E., Messia, M. C., Andersson, R. (2019). Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science, 85, 175–181.

Ferreira, F. N. A., Ferreira, W. M., Inácio, D. F. S., Silva Neta, C. S., Mota, K. C. N., Costa Júnior, M. B., … Caicedo, W. O. (2019). In vitro digestion and fermentation characteristics of tropical ingredients, co-products and by-products with potential use in diets for rabbits. Animal Feed Science and Technology, 252, 1–10.

Fortun-Lamothe, L., Gidenne, T. (2006). Recent advances in the digestive physiology of the growing rabbit. V: L. Maertens in P. Coudert (ur.), Recent advances in rabbit sciences (str. 202–210). Melle, ILVO. Pridobljeno s

Gidenne, T. (1997). Ceaco-colic digestion in the growing rabbit: impact of nutritional factors and related disturbances. Livestock Production Science, 51, 73–88.

Gidenne, T., Jehl, N., Segura, M., Michalet-Doreau, B. (2002). Microbial activity in the caecum of the rabbit around weaning: impact of a dietary fibre deficiency and of intake level. Animal Feed Science and Technology, 99, 107–118.

Gidenne, T., Lebas, F., Licois, D., Garcia, J. (2020). Nutrition and feeding strategy: impacts on health status. V: C. de Blas in J. Wiseman (ur.), Nutrition of the rabbit (str. 193–221), 3rd edition. CAB International. Pridobljeno s

Holdeman, L. V., Cato, E. P., Moore, W. E. C. (1977). Ether extraction of volatile fatty acids. V: Anaerobe laboratory manual (str. 1–132), 4th edition. Virginia: Southern Printing Company.

Hughes, S. A., Shewry, P. R., Gibson, G. R., McCleary, B. V., Rastall, R. A. (2008). In vitro fermentation of oat and barley derived b-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 64(3), 482–493.

Jha, R., Rossnagel, B., Pieper, R., Van Kessel, A., Leterme, P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4(5), 724–731.

Karppinen, S., Liukkonen, K., Aura, A.-M., Forssell, P., Poutainen, K. (2000). In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. Journal of the Science of Food and Agriculture, 80, 1469–1476.<1469::AID-JSFA675>3.0.CO;2-A

Kaur, A., Rose, D. J., Rumpagaporn, P., Patterson, J. A., Hamaker, B. R. (2011). In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using “slowly fermentable” dietary fibers. Journal of Food Science, 76(5), H137–H142.

Kaur, R., Sharma, M., Ji, D., Xu, M., Agyei, D. (2020). Structural features, modification, and functionalities of β-glucan. Fibers, 8(1), 1–30.

Kermauner, A., Lavrenčič, A. (2008a). Supplementation of rabbit diet with chestnut wood extract: effect on in vitro gas production from three sources of carbohydrates. V: Proc.: 9th World Rabbit Congress, 2008–06–10/13, Verona, Italy: 683–387. Pridobljeno s

Kermauner, A., Lavrenčič, A. (2008b). Supplementation of rabbit diet with chestnut wood extract: effect on in vitro gas production from two sources of protein. V: Proc. 9th World Rabbit Congress, 2008–06–10/13, Verona, Italy: 689–693. Pridobljeno s

Kermauner, A., Lavrenčič, A. (2010). In vitro fermentation of different commercially available pectins using inoculum from rabbit caecum. World Rabbit Science, 18, 1–7. Pridobljeno s

Kermauner, A., Lavrenčič, A. (2011). In vitro SCFA production in most common rabbit feedstuffs. V: S. Hoy (ur.), 17. Internationale Tagung über Haltung und Krankheiten der Kaninchen, Pelztiere und Heimtiere (str. 126–137). Celle, 11.–12. Mai 2011. Gießen: VVB Laufersweiler Verlag. Pridobljeno s

Kermauner, A., Lavrenčič, A. (2012). The in vitro caecal fermentation of different starch sources in rabbits. V: P. Dovč in N. Petrič (ur.), Acta agriculturae Slovenica, Supplement 3: 20th International Symposium Animal Science days: Livestock production as a technological and social challenge (str. 71–75). Ljubljana: Univerza v Ljubljani, Biotehniška fakulteta. Pridobljeno s

Kermauner, A., Štruklec, M., Marinšek Logar, M. (1996). Addition of probiotic to feed with different energy and ADF content in rabbits. 2. Effect on microbial metabolism in the caecum. World Rabbit Science, 4, 195–200.

Lavrenčič, A. (2007). The effect of rabbit age on in vitro caecal fermentation of starch, pectin, xylan, cellulose, compound feed and its fibre. Animal, 1: 241–248.

Lavrenčič, A., Stefanon, B., Susmel, P. (1997). An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science, 64(3), 423–431.

Lu, S., Flanagan, B. M., Williams, B. A., Mikkelsen, D., Gidley, M. J. (2020). Cell wall architecture as well as chemical composition determines fermentation of wheat cell walls by a faecal inoculum. Food Hydrocolloids, 107, 105858.

Lu, S., Williams, B. A., Flanagan, B. M., Yao, H., Mikkelsen, D., Gidley, M. J. (2021). Fermentation outcomes of wheat cell wall related polysaccharides are driven by substrate effects as well as initial faecal inoculum. Food Hydrocolloids, 120, 106978.

Maertens, L., Aerts, J. M., De Boever, J. (2004). Degradation of dietary oligofructose and inulin in the gastro-intestinal tract of the rabbit and the effects on caecal pH and volatile fatty acids. World Rabbit Science, 12, 235–246.

Marounek, M., Brezina, P., Baran, M. (2000). Fermentation of carbohydrates and yield of microbial protein in mixed cultures of rabbit caecal microorganisms. Arch. Anim. Nutr., 53, 241–252.

Marounek, M., Vovk, S. J., Benda, V. (1997). Fermentation patterns in rabbit caecal cultures supplied with plant polysaccharides and lactate. Acta Veterinaria Brno, 67, 9–13.

Menke, K. H., Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 375–386.

Ocasio-Vega, C., Abad-Guamán, R., Delgado, R., Carabaño, R., Carro, M. D., García, J. (2018). In vitro caecal fermentation of carbohydrate-rich feedstuffs in rabbits as affected by substrate pre-digestion and donors’ diet. World Rabbit Science, 26, 15–25.

Pellikaan, W. F., Verdonk, J. M. A. J, Shim, S. B., Vestegen, M. W. A. (2007). Adaptive capacity of faecal microbiota from piglets receiving diets with different types of inulin-type fructans. Livestock Science, 108, 178–181.

Salvador, V., Cherbut, C., Barry, J. L. Bertrand, D., Bonnet, C., Delortlaval, J. (1993). Sugar composition of dietary fibre and short chain fatty acid production during in vitro fermentation of human bacteria. British Journal of Nutrition, 70, 189–197. Pridobljeno s

SAS Institute Inc. (2015). SAS/STAT user’s guide: Statistics. Version 9.4. Cary, NC, USA: SAS Institute Inc.

Slovakova L., Duškova D., Marounek M. (2002). Fermentation of pectin and glucose and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bifidobacterium pseudolongum. Lett. Appl. Microb., 35, 126–130.

Tawfick, M. M., Xie H., Zhao, C., Shao, P., Farag, M. A. (2022). Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. International Journal of Biological Macromolecules, 208, 948–961.

Venkateswaran, K., Hattori, N., La Duc, M. T., Kern, R. (2003). ATP as a biomarker of viable microorganisms in clean room facilities. Journal of Microbiological Methods, 52, 367–377.

Villamide, M. J., Carabaño, R., Maertens, L., Pascual, J., Gidenne, T., Falcao-e-Cunha, L., Xiccato, G. (2009). Prediction of the nutritional value of European compound feeds for rabbits by chemical components and in vitro analysis. Animal Feed Science and Technology, 150, 283–294.

Volek, Z., Marounek, M. (2011). Dried chicory root (Cichorium intybus L.) as a natural fructan source in rabbit diet: effects on growth performance, digestion and caecal and carcass traits. World Rabbit Science, 19, 143–150.

Volek, Z., Marounek, M., Skrivanova, V. (2007). Effect of a starter diet supplementation with mannanoligosaccharide or inulin on health status, caecal metabolism, digestibility of nutrients and growth of early weaned rabbits. Animal, 1, 523–530.

Williams, B. A., Bosch, M. W., Boer, H., Verstegen, M. W. A., Tamminga, S. (2005). An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Animal Feed Science and Technology, 123–124, 445–462.

Williams, B. A., Verstegen, M. W. A., Tamminga, S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews, 14, 207–227.

Yang, H. J., Cao, Y. C., Zhang, D. F. (2010). Caecal fermentation patterns in vitro of glucose, cellobiose, microcrystalline cellulose and NDF separated from alfalfa hay in the adult rabbit. Animal Feed Science and Technology, 162, 149–154.


30. 12. 2022



Original Scientific Article

How to Cite

LAVRENČIČ, A., & KERMAUNER, A. (2022). In vitro fermentation parameters and VFA production of non-structural carbohydrates in rabbits. Acta Agriculturae Slovenica, 118(4), 1–9.

Similar Articles

1-10 of 514

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>