Characterization of nuclear DNA content and chromosome numbers of Tulipa luanica Millaku, T. kosovarica Kit Tan, Shuka & Krasniqi and T. albanica Kit Tan & Shuka
DOI:
https://doi.org/10.14720/aas.2023.119.2.13280Keywords:
tulip, DNA content, chromosome number, endemicaAbstract
The Balkan Peninsula is considered an important centre of native tulip species. Tulipa kosovarica and Tulipa luanica are new species recently discovered in Kosovo, and Tulipa albanica in Albania. The current study aims at the investigating the nuclear DNA content and chromosome number of these three tulipa species in order to provide for the first time data on their genome size and differences among these three Tulipa species. Analysis of nuclear DNA content was performed by flow cytometer (Partec CyFlow Space) in mature fresh leaves for each Tulipa species. Samples for chromosome analysis were taken from the root tip meristem of the bulbs. Results showed significantly higher amounts of nuclear DNA (2C) in T. luanica compared to T. kosovarica and T. albanica. The chromosome number for these three species was 2n = 2x = 24, while the chromosome sizes of T. luanica resulted larger, compared to that of T. kosovarica and T. albanica. A correlation between the nuclear DNA content and chromosome size was found among these tulipa species. Moreover, nuclear DNA content and chromosome sizes of T. luanica, T. kosovarica and T. albanica showed clear differences among these species.
References
Abbasi, A. R., Mohammadi, B., Sarvestani, R., & Mirataei, F. (2015). Expression analysis of candidate genes in common vetch (Vicia sativa L.) under drought stress. Journal of Agricultural Science and Technology, 17(5), 1291-1302.
Abedi, R., Babaei, A., & Karimzadeh, G. (2015). Karyological and flow cytometric studies of Tulipa (Liliaceae) species from Iran. Plant Systematics and Evolution, 301, 1473-1484. https://doi.org/10.1007/s00606-014-1164-z
Arnholdt-Schmitt, B. (2005). Functional markers and a ‘systemic strategy’: convergency between plant breeding, plant nutrition and molecular biology. Plant Physiology and Biochemistry, 43(9), 817-820. https://doi.org/10.1016/j.plaphy.2005.08.011
Berisha, N., Millaku, F., Gashi, B., Krasniqi, E., & Novak, J. (2015). Initial determination of DNA polymorphism of some Primula veris L. populations from Kosovo and Austria. Physiology and Molecular Biology of Plants, 21, 117-122. https://doi.org/10.1007/s12298-014-0275-x
Botschantzeva, Z. P. (1962). Tulips: taxonomy, morphology, cytology, phytogeography, and physiology. English translated edition by HQ Varekamp (1982). Balkema, Rotterdam
Chai, X., Dong, R., Liu, W., Wang, Y., & Liu, Z. (2017). Optimizing sample size to assess the genetic diversity in common vetch (Vicia sativa L.) populations using start codon targeted (SCoT) markers. Molecules, 22(4), 567. https://doi.org/10.3390/molecules22040567
Dolezel, J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry Part A, 51, 127-128. https://doi.org/10.1002/cyto.a.10013
Dolezel, J., Lucretti, S., Molnár, I., Cápal, P., & Giorgi, D. (2021). Chromosome analysis and sorting. Cytometry Part A, 99(4), 328-342. https://doi.org/10.1002/cyto.a.24324
Dolezel, J., Kubaláková, M., Bartoš, J., & Macas, J. (2004). Flow cytogenetics and plant genome mapping. Chromosome Research, 12, 77-91. https://doi.org/10.1023/B:CHRO.0000009293.15189.e5
Dolezel, J., Greilhuber, J., & Suda, J. (Eds.). (2007). Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. John Wiley & Sons. https://doi.org/10.1002/9783527610921
Govaerts, R. (2008). World checklist series, RBG Kew, UK: genus Tulipa. http://apps.kew.org/wcsp/qsearch.do
Govaerts, R. (2010). World checklist of selected plant families: the genus Tulipa L. Royal Botanic Gardens, Kew, UK: genus Tulipa. http://apps.kew.org/wcsp/qsearch.do.
Greilhuber, J. (1998). Intraspecific variation in genome size: a critical reassessment. Annals of Botany, 82, 27-35. https://doi.org/10.1006/anbo.1998.0725
Greilhuber, J. (2005). Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany, 95(1), 91-98. https://doi.org/10.1093/aob/mci004
Hunter, P. (2018). Genomics yields fresh insights on plant domestication: Understanding the process of domestication can help to guide breeding efforts in plants. EMBO reports, 19(11), e47153. https://doi.org/10.15252/embr.201847153
Karimzadeh, G., Mousavi, S. H., Jafarkhani-Kermani, M., & Jalali-Javaran, M. (2010). Karyological and nuclear DNA variation in Iranian endemic muskmelon (Cucumis melo var. inodorus). Cytologia, 75(4), 451-461. https://doi.org/10.1508/cytologia.75.451
Knight, C. A., Molinari, N. A., & Petrov, D. A. (2005). The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany, 95(1), 177-190. https://doi.org/10.1093/aob/mci011
Kumar, L. S. (1999). DNA markers in plant improvement: an overview. Biotechnology Advances, 17(2-3), 143-182. https://doi.org/10.1016/S0734-9750(98)00018-4
Levan A., Fredga K. & Sandberg A.A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52, 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
Masoud, S., Shirin, Z. F., Shadi, K., & Bahram, Z. (2002). Karyotypic study in some Iranian species and populations of Tulipa L. (Liliaceae). Caryologia, 55(1), 81-89. https://doi.org/10.1080/00087114.2002.10589261
Millaku, F., & Elezaj, I. (2015). Tulipa luanica (Liliaceae), a new species from southern Kosovo. Annales Botanici Fennici, 52(1), 315-320. https://doi.org/10.5735/085.052.0506
Millaku, F., Elezaj, I., & Berisha, N. (2018). Sympatric area and ecology of some Tulipa species in the West Balkan Peninsula. Thaiszia-Journal of Botany, 28(1), 35-47.
Ohri, D. (1998). Genome size variation and plant systematics. Annals of Botany, 82, 75-83. https://doi.org/10.1006/anbo.1998.0765
Osmani, M., Tuna, M., & Elezaj, I. R. (2018). Concentration of some metals in soil and plant organs and their biochemical profiles in Tulipa luanica, T. kosovarica and T. albanica native plant species. Physiology and Molecular Biology of Plants, 24, 1117-1126. https://doi.org/10.1007/s12298-018-0539-y
Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. P., & Hyvönen, J. (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods, 9, 1-32. https://doi.org/10.1186/1746-4811-9-6
Raveendar, S., Lee, G. A., Jeon, Y. A., Lee, Y. J., Lee, J. R., Cho, G. T., ... & Chung, J. W. (2015). Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules, 20(1), 1543-1550. https://doi.org/10.3390/molecules20011543
Seijo, J. G., & Fernández, A. (2003). Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). American Journal of Botany, 90(7), 980-987. https://doi.org/10.3732/ajb.90.7.980
Shuka, L., Tan, K., & Krasniqi, E. (2012). Tulipa kosovarica (Liliaceae), a new species of tulip from Kosovo. Phytotaxa, 62, 1–9. https://doi.org/10.11646/phytotaxa.62.1.1
Shuka, L., Tan, K., & Siljak-Yakovlev, S. (2010). Tulipa albanica (Liliaceae), a new species from northeastern Albania. Phytotaxa, 10(1), 17. https://doi.org/10.11646/phytotaxa.10.1.2
Temsch, E. M. (2010). Genome size in liverworts. Preslia, 82, 63-80. https://doi.org/10.1155/2010/596542
Tuna, M., Vogel, K. P., Arumuganathan, K., & Gill, K. S. (2001). DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, 41(5), 1629-1634. https://doi.org/10.2135/cropsci2001.4151629x
Vlacilova, K., Ohri, D., Vrána, J., Číhalíková, J., Kubaláková, M., Kahl, G., & Doležel, J. (2002). Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Research, 10, 695-706. https://doi.org/10.1023/A:1021584914931
Wang, T. Z., Liu, M., Zhao, M. G., Chen, R., & Zhang, W. H. (2015). Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biology, 15(1), 1-13. https://doi.org/10.1186/s12870-015-0530-5
Zonneveld, B. J. (2009). The systematic value of nuclear genome size for “all” species of Tulipa L. (Liliaceae). Plant Systematics and Evolution, 281(1-4), 217-245. https://doi.org/10.1007/s00606-012-0635-3
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mirsade Osmani, Metin Tuna, Isa Elezaj
This work is licensed under a Creative Commons Attribution 4.0 International License.