Combined and single osmopriming effects on wheat (Triticum aestivum L.) performance
DOI:
https://doi.org/10.14720/aas.2024.120.2.13294Keywords:
priming, antioxidant capacity, phenolic compounds, gene expression, fluorescence, wheat (Triticum aestivum L.)Abstract
Osmopriming has been shown to improve the germination and growth of bread wheat (Triticum aestivum L.). This study explores the impact of various priming agent NaCl (3g l-1), proline (1 mM), ZnSO4 (1 mM), and their combination on wheat performance during the summer season (Jul-Aug 2022) at the greenhouse of Payame Noor University, Tabriz. Wheat seeds treated with a combination of priming agent demonstrated significantly enhanced performance compared to untreated seeds. Chlorophyll fluorescence measurements taken 35 days post-cultivation revealed a higher Photosystem Performance Index (PIabs) in osmoprimed seeds, particularly those treated with combined priming agent. Furthermore, primed plants demonstrated elevated concentrations of chlorophyll a, b, and carotenoids. Osmopriming also modulated the oxidative status of enzymes such as glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD). Genetic analysis showed that osmopriming could influence the expression of NHX2, a gene linked to improving plant growth, water uptake, and yield in stress conditions.
References
Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y., et al. (2018). Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 145, 12-20. https://doi.org/10.1016/j.envexpbot.2017.10.002
Adnan, M., Rehman, H., Asif, M., Hussain, M., Bilal, H., Adnan, M., et al. (2020). Seed priming; an effective way to improve plant growth. EC Agric, 6(6), 01-05.
Ambreen, S., Athar, H.-u.-R., Khan, A., Zafar, Z. U., Ayyaz, A., & Kalaji, H. M. (2021). Seed priming with proline improved photosystem II efficiency and growth of wheat (Triticum aestivum L.). BMC Plant Biology, 21(1), 1-12. https://doi.org/10.1186/s12870-021-03273-2
Amin, R., Khan, A. Z., & Khalil, S. K. (2012). Effect of osmopriming sources and moisture stress on wheat. Pakistan Journal of Botany, 44(3), 867-871.
Amoah, J. N., Ko, C. S., Yoon, J. S., & Weon, S. Y. (2019). Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1), 492-505. https://doi.org/10.1080/17429145.2019.1662098
Barragan, V., Leidi, E. O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J. A., et al. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell, 24(3), 1127-1142. https://doi.org/10.1105/tpc.111.095273
Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M.-a., Ushijima, K., Nakano, R., et al. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23(9), 3482-3497. https://doi.org/10.1105/tpc.111.089581
Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Bibi, A., Majid, S., Ulfat, A., Khatoon, S., Munir, A., & Javed, G. (2017). Effect of nitric oxide seed priming on chilling induced water related physiological attributes in germinating wheat. Journal of Animal and Plant Sciences, 27, 186-191.
Binodh, A. K., Kathiresan, P. K., Thankappan, S., & Senthil, A. (2023). Acclimatization of non-cultivated rice landraces to early moisture stress mediated by enzymatic antioxidants and osmolyte accumulation. Biocatalysis and Agricultural Biotechnology, 47, 102623. https://doi.org/10.1016/j.bcab.2023.102623
Bisen, K., Keswani, C., Mishra, S., Saxena, A., Rakshit, A., & Singh, H. (2015). Unrealized potential of seed biopriming for versatile agriculture. Nutrient Use Efficiency: from Basics to Advances, 193-206. https://doi.org/10.1007/978-81-322-2169-2_13
Biswas, S., Seal, P., Majumder, B., & Biswas, A. K. (2023). Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress, 100186. https://doi.org/10.1016/j.stress.2023.100186
Bourioug, M., Ezzaza, K., Bouabid, R., Alaoui-Mhamdi, M., Bungau, S., Bourgeade, P., et al. (2020). Influence of hydro-and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research, 27, 13215-13226. https://doi.org/10.1007/s11356-020-07893-3
Bulle, M., Yarra, R., & Abbagani, S. (2016). Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Molecular Breeding, 36(4), 1-12. https://doi.org/10.1007/s11032-016-0451-5
Carvalho, A., Reis, S., Pavia, I., & Lima-Brito, J. E. (2019). Influence of seed priming with iron and/or zinc in the nucleolar activity and protein content of bread wheat. Protoplasma, 256(3), 763-775. https://doi.org/10.1007/s00709-018-01335-1
Chen, K., & Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Science, 180(2), 212-220. https://doi.org/10.1016/j.plantsci.2010.08.007
Choudhary, S. K., Kumar, V., Singhal, R. K., Bose, B., Chauhan, J., Alamri, S., et al. (2021). Seed priming with Mg (NO3) 2 and ZnSO4 salts triggers the germination and growth attributes synergistically in wheat varieties. Agronomy, 11(11), 2110. https://doi.org/10.3390/agronomy11112110
da COSTA, R. C. L., LOBATO, A. K. D. S., da SILVEIRA, J. A. G., & LAUGHINGHOUSE IV, H. D. (2011). ABA-mediated proline synthesis in cowpea leaves exposed to water deficiency and rehydration. Turkish Journal of Agriculture and Forestry, 35(3), 309-317. https://doi.org/10.3906/tar-0911-409
Dalil, B. (2014). Response of medicinal plants to seed priming: A review. International Journal of Plant, Animal and Environmental Sciences, 4(2), 741-745.
Debta, H., Kunhamu, T., Petrík, P., Fleischer Jr, P., & Jisha, K. (2023). Effect of hydropriming and osmopriming on the germination and seedling vigor of the East Indian sandalwood (Santalum album L.). Forests, 14(6), 1076. https://doi.org/10.3390/f14061076
E Sobhy, S., G Aseel, D., M Abo-Kassem, E.-E., A Sewelam, N., M Saad-Allah, K., A Samy, M., et al. (2023). Priming of wheat plant with weed extracts, calcium and salicylic acid for contribution to alleviating the oxidative stress imposed by Fusarium graminearum and lead toxicity. Novel Research in Microbiology Journal, 7(2), 1932-1965. https://doi.org/10.21608/nrmj.2023.294938
Ellouzi, H., Sghayar, S., & Abdelly, C. (2017). H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. Journal of Plant Physiology, 210, 38-50. https://doi.org/10.1016/j.jplph.2016.11.014
Faisal, S., Muhammad, S., Luqman, M., Hasnain, M., Rasool, A., Awan, M. U. F., et al. (2023). Effects of priming on seed germination, physico-chemistry and yield of late sown wheat crop (Triticum aestivum L.). Polish Journal of Environmental Studies, 32(2). https://doi.org/10.15244/pjoes/155970
Farooq, M., Romdhane, L., Al Sulti, M. K., Rehman, A., Al‐Busaidi, W. M., & Lee, D. J. (2020). Morphological, physiological and biochemical aspects of osmopriming‐induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2), 176-186. https://doi.org/10.1111/jac.12384
Farooq, M., Usman, M., Nadeem, F., ur Rehman, H., Wahid, A., Basra, S. M., et al. (2019). Seed priming in field crops: potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731-771. https://doi.org/10.1071/CP18604
Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13(1), 45-55. https://doi.org/10.1016/j.jssas.2013.01.001
Feghhenabi, F., Hadi, H., Khodaverdiloo, H., & Van Genuchten, M. T. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231, 106022. https://doi.org/10.1016/j.agwat.2020.106022
Forough, M., Navabpour, S., Ebrahimie, E., Ebadi, A. A., & Kiani, D. (2018). Evaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice. Journal of Plant Molecular Breeding, 6(2), 27-37.
Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93-100. https://doi.org/10.1104/pp.110.166181
García-López, J., Niño-Medina, G., Olivares-Sáenz, E., Lira-Saldivar, R., Barriga-Castro, E., Vázquez-Alvarado, R., et al. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants, 8(8), 254. https://doi.org/10.3390/plants8080254
Ghasemi, A., Farzaneh, S., Moharramnejad, S., Sharifi, R. S., Youesf, A. F., Telesinski, A., et al. (2022). Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Scientific Reports, 12(1), 14648. https://doi.org/10.1038/s41598-022-18229-1
Hasan, M., Salam, M., Chowdhury, M., Sultana, M., & Islam, N. (2016). Effect of osmopriming on germination of rice seed. Bangladesh Journal of Agricultural Research, 41(3), 451-460. https://doi.org/10.3329/bjar.v41i3.29717
Hosen, I., Moonmoon, S., Hannan, A., Hoque, M. N., Shaila, S., Islam, S. K. T., et al. (2023). Seed priming influences on yield and protein content of wheat sown at different time. Archives of Agriculture and Environmental Science, 8(2), 214-220. https://doi.org/10.26832/24566632.2023.0802018
Hua-long, L., Han-jing, S., Jing-guo, W., Yang, L., De-tang, Z., & Hong-wei, Z. (2014). Effect of seed soaking with exogenous proline on seed germination of rice under salt stress. Journal of Northeast Agricultural University (English Edition), 21(3), 1-6. https://doi.org/10.1016/S1006-8104(14)60062-3
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. https://doi.org/10.1016/j.jplph.2015.12.011
Islam, R., Mukherjee, A., & Hossin, M. (2012). Effect of osmopriming on rice seed germination and seedling growth. Journal of the Bangladesh Agricultural University, 10(452-2016-35564), 15-20. https://doi.org/10.3329/jbau.v10i1.12013
Janda, T., Darko, É., Shehata, S., Kovács, V., Pál, M., & Szalai, G. (2016). Salt acclimation processes in wheat. Plant Physiology and Biochemistry, 101, 68-75. https://doi.org/10.1016/j.plaphy.2016.01.025
Kaczmarek, M., Fedorowicz-Strońska, O., Głowacka, K., Waśkiewicz, A., & Sadowski, J. (2017). CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum, 39, 1-11. https://doi.org/10.1007/s11738-016-2336-y
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., et al. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1-11. https://doi.org/10.1007/s11738-016-2113-y
Kanjevac, M., Jakovljević, D., Todorović, M., Stanković, M., Ćurčić, S., & Bojović, B. (2022). Improvement of germination and early growth of radish (Raphanus sativus L.) through modulation of seed metabolic processes. Plants, 11(6), 757. https://doi.org/10.3390/plants11060757
Kavi Kishor, P. B., Suravajhala, P., Rathnagiri, P., & Sreenivasulu, N. (2022). Intriguing role of proline in redox potential conferring high temperature stress tolerance. Frontiers in Plant Science, 13, 867531. https://doi.org/10.3389/fpls.2022.867531
Kawatra, M., Kaur, K., & Kaur, G. (2019). Effect of osmo priming on sucrose metabolism in spring maize, during the period of grain filling, under limited irrigation conditions. Physiology and Molecular Biology of Plants, 25, 1367-1376. https://doi.org/10.1007/s12298-019-00706-z
Khaing, M., Ultra Jr, V., & Chul Lee, S. (2020). Seed priming influence on growth, yield, and grain biochemical composition of two wheat cultivars. Journal of Agricultural Science and Technology, 22(3), 875-888.
Lemmens, E., Deleu, L. J., De Brier, N., De Man, W. L., De Proft, M., Prinsen, E., et al. (2019). The impact of hydro-priming and osmo-priming on seedling characteristics, plant hormone concentrations, activity of selected hydrolytic enzymes, and cell wall and phytate hydrolysis in sprouted wheat (Triticum aestivum L.). ACS omega, 4(26), 22089-22100. https://doi.org/10.1021/acsomega.9b03210
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd. https://doi.org/10.1042/bst0110591
Lobato, A., Luz, L., Costa, R., Santos Filho, B., Meirelles, A., Oliveira Neto, C., et al. (2009). Silicon exercises influence on nitrogen compounds in pepper subjected to water deficit. Research Journal of Biological Sciences, 4(9), 1048-1055.
Magné, C., Saladin, G., & Clément, C. (2006). Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera L. Chemosphere, 62(4), 650-657. https://doi.org/10.1016/j.chemosphere.2005.04.119
Mamedi, A., Sharifzadeh, F., Maali-Amiri, R., Divargar, F., & Rasoulnia, A. (2022). Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process. Physiology and Molecular Biology of Plants, 28(1), 251-274. https://doi.org/10.1007/s12298-022-01125-3
Marta, B., Szafrańska, K., & Posmyk, M. M. (2016). Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science, 7, 575. https://doi.org/10.3389/fpls.2016.00575
Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
Mehboob, N., Yasir, T. A., Hussain, S., Farooq, S., Naveed, M., & Hussain, M. (2022). Osmopriming combined with boron-tolerant bacteria (Bacillus sp. MN54) improved the productivity of desi chickpea under rainfed and irrigated conditions. Agriculture, 12(8), 1269. https://doi.org/10.3390/agriculture12081269
Mim, T. F., Anwar, M. P., Ahmed, M., Sriti, N., Moni, E. H., Hasan, A. K., et al. (2021). Competence of different priming agents for increasing seed germination, seedling growth and vigor of wheat. Fundamental and Applied Agriculture, 6(4), 444–459-444–459.
Mirmazloum, I., Kiss, A., Erdélyi, É., Ladányi, M., Németh, É. Z., & Radácsi, P. (2020). The Effect of osmopriming on seed germination and early seedling characteristics of Carum carvi L. Agriculture, 10(4), 94. https://doi.org/10.3390/agriculture10040094
Mirza, S. R. (2021). 23. Seed priming enhanced seed germination traits of Wheat under water, salt and heat stress. Pure and Applied Biology (PAB), 4(4), 650-658. https://doi.org/10.19045/bspab.2015.44025
Moosavi, A., Tavakkol Afshari, R., Sharif-Zadeh, F., & Aynehband, A. (2009). Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. Journal of Food, Agriculture and Environment, 7(3-4), 353-358.
Mouradi, M., Bouizgaren, A., Farissi, M., Latrach, L., Qaddoury, A., & Ghoulam, C. (2016). Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Medicago sativa L.)–rhizobia symbiosis under drought stress. Scientia Horticulturae, 213, 232-242. https://doi.org/10.1016/j.scienta.2016.11.002
Mousavi, A., Pourakbar, L., Moghaddam, S. S., & Popović-Djordjević, J. (2021). The effect of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress. Journal of Environmental Chemical Engineering, 9(4), 105456. https://doi.org/10.1016/j.jece.2021.105456
Nikalje, G. C., Variyar, P., Joshi, M., Nikam, T., & Suprasanna, P. (2018). Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. PLoS One, 13(4), e0193394. https://doi.org/10.1371/journal.pone.0193394
Pavani, K., Divya, V., Veena, I., Aditya, M., & Devakinandan, G. (2014). Influence of bioengineered zinc nanoparticles and zinc metal on Cicer arietinum seedlings growth. Asian Journal of Agriculture and Biology, 2, 216-223.
Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905-927. https://doi.org/10.1080/01904167.2012.663443
Rai-Kalal, P., & Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160, 341-351. https://doi.org/10.1016/j.plaphy.2021.01.032
Rehman, A., Farooq, M., Ullah, A., Nawaz, A., ud Din, M. M., & Shahzad, B. (2022). Seed priming with zinc sulfate and zinc chloride affects physio-biochemical traits, grain yield and biofortification of bread wheat (Triticum aestivum). Crop and Pasture Science, 73(5), 449-460. https://doi.org/10.1071/CP21194
Rosińska, A., Andrzejak, R., & Kakkerla, V. (2023). Effect of Osmopriming with melatonin on germination, vigor and health of Daucus carota L. seeds. Agriculture, 13(4), 749. https://doi.org/10.3390/agriculture13040749
Salleh, M. S., Nordin, M. S., & Puteh, A. B. (2020). Germination performance and biochemical changes under drought stress of primed rice seeds. Seed Science and Technology, 48(3), 333-343. https://doi.org/10.15258/sst.2020.48.3.02
Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in plant science, 21(4), 329-340. https://doi.org/10.1016/j.tplants.2015.11.003
Sharma, P., Sirhindi, G., Singh, A. K., Kaur, H., & Mushtaq, R. (2017). Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense. Physiology and Molecular Biology of Plants, 23(4), 809-816. https://doi.org/10.1007/s12298-017-0461-8
Sherin, G., Aswathi, K. R., & Puthur, J. T. (2022). Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress, 4, 100079. https://doi.org/10.1016/j.stress.2022.100079
Sheteiwy, M. S., Ulhassan, Z., Qi, W., Lu, H., AbdElgawad, H., Minkina, T., et al. (2022). Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. Frontiers in Plant Science, 13, 886862. https://doi.org/10.3389/fpls.2022.886862
Singhal, R. K., Pandey, S., & Bose, B. (2021). Seed priming with Mg (NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress, 2, 100037. https://doi.org/10.1016/j.stress.2021.100037
Siyar, S., Sami, S., Muhammad, Z., & Majeed, A. (2020). Seed priming: Implication in agriculture to manage salinity stress in crops. New Frontiers in Stress Management for Durable Agriculture, 269-280. https://doi.org/10.1007/978-981-15-1322-0_16
Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D’Souza, S. F. (2010). Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum, 32(6), 1135-1144. https://doi.org/10.1007/s11738-010-0505-y
Tohidi, B., Rahimmalek, M., & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry, 220, 153-161. https://doi.org/10.1016/j.foodchem.2016.09.203
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117. https://doi.org/10.1021/jf9801973
Wang, X., Liu, H., Yu, F., Hu, B., Jia, Y., Sha, H., et al. (2019). Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports, 9(1), 8543. https://doi.org/10.1038/s41598-019-44958-x
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60-67.
Xu, Y., Zhou, Y., Hong, S., Xia, Z., Cui, D., Guo, J., et al. (2013). Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. PLoS One, 8(11), e78098. https://doi.org/10.1371/journal.pone.0078098
Yarra, R. (2019). The wheat NHX gene family: potential role in improving salinity stress tolerance of plants. Plant Gene, 18, 100178. https://doi.org/10.1016/j.plgene.2019.100178
Yavari, A., Habibi, G., Abedini, M., & Bakhshi Khaniki, G. (2022). The effect of screening and optimization of osmopriming of wheat seeds (Triticum aestivumL.) using surface-response method. Journal of Iranian Plant Ecophysiological Research.
Zhang, Y., Luan, Q., Jiang, J., & Li, Y. (2021). Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science, 12, 735275. https://doi.org/10.3389/fpls.2021.735275Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y., et al. (2018). Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 145, 12-20. https://doi.org/10.1016/j.envexpbot.2017.10.002
Adnan, M., Rehman, H., Asif, M., Hussain, M., Bilal, H., Adnan, M., et al. (2020). Seed priming; an effective way to improve plant growth. EC Agric, 6(6), 01-05.
Ambreen, S., Athar, H.-u.-R., Khan, A., Zafar, Z. U., Ayyaz, A., & Kalaji, H. M. (2021). Seed priming with proline improved photosystem II efficiency and growth of wheat (Triticum aestivum L.). BMC Plant Biology, 21(1), 1-12. https://doi.org/10.1186/s12870-021-03273-2
Amin, R., Khan, A. Z., & Khalil, S. K. (2012). Effect of osmopriming sources and moisture stress on wheat. Pakistan Journal of Botany, 44(3), 867-871.
Amoah, J. N., Ko, C. S., Yoon, J. S., & Weon, S. Y. (2019). Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1), 492-505. https://doi.org/10.1080/17429145.2019.1662098
Barragan, V., Leidi, E. O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J. A., et al. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell, 24(3), 1127-1142. https://doi.org/10.1105/tpc.111.095273
Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M.-a., Ushijima, K., Nakano, R., et al. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23(9), 3482-3497. https://doi.org/10.1105/tpc.111.089581
Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Bibi, A., Majid, S., Ulfat, A., Khatoon, S., Munir, A., & Javed, G. (2017). Effect of nitric oxide seed priming on chilling induced water related physiological attributes in germinating wheat. Journal of Animal and Plant Sciences, 27, 186-191.
Binodh, A. K., Kathiresan, P. K., Thankappan, S., & Senthil, A. (2023). Acclimatization of non-cultivated rice landraces to early moisture stress mediated by enzymatic antioxidants and osmolyte accumulation. Biocatalysis and Agricultural Biotechnology, 47, 102623. https://doi.org/10.1016/j.bcab.2023.102623
Bisen, K., Keswani, C., Mishra, S., Saxena, A., Rakshit, A., & Singh, H. (2015). Unrealized potential of seed biopriming for versatile agriculture. Nutrient Use Efficiency: from Basics to Advances, 193-206. https://doi.org/10.1007/978-81-322-2169-2_13
Biswas, S., Seal, P., Majumder, B., & Biswas, A. K. (2023). Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress, 100186. https://doi.org/10.1016/j.stress.2023.100186
Bourioug, M., Ezzaza, K., Bouabid, R., Alaoui-Mhamdi, M., Bungau, S., Bourgeade, P., et al. (2020). Influence of hydro-and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research, 27, 13215-13226. https://doi.org/10.1007/s11356-020-07893-3
Bulle, M., Yarra, R., & Abbagani, S. (2016). Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Molecular Breeding, 36(4), 1-12. https://doi.org/10.1007/s11032-016-0451-5
Carvalho, A., Reis, S., Pavia, I., & Lima-Brito, J. E. (2019). Influence of seed priming with iron and/or zinc in the nucleolar activity and protein content of bread wheat. Protoplasma, 256(3), 763-775. https://doi.org/10.1007/s00709-018-01335-1
Chen, K., & Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Science, 180(2), 212-220. https://doi.org/10.1016/j.plantsci.2010.08.007
Choudhary, S. K., Kumar, V., Singhal, R. K., Bose, B., Chauhan, J., Alamri, S., et al. (2021). Seed priming with Mg (NO3) 2 and ZnSO4 salts triggers the germination and growth attributes synergistically in wheat varieties. Agronomy, 11(11), 2110. https://doi.org/10.3390/agronomy11112110
da COSTA, R. C. L., LOBATO, A. K. D. S., da SILVEIRA, J. A. G., & LAUGHINGHOUSE IV, H. D. (2011). ABA-mediated proline synthesis in cowpea leaves exposed to water deficiency and rehydration. Turkish Journal of Agriculture and Forestry, 35(3), 309-317. https://doi.org/10.3906/tar-0911-409
Dalil, B. (2014). Response of medicinal plants to seed priming: A review. International Journal of Plant, Animal and Environmental Sciences, 4(2), 741-745.
Debta, H., Kunhamu, T., Petrík, P., Fleischer Jr, P., & Jisha, K. (2023). Effect of hydropriming and osmopriming on the germination and seedling vigor of the East Indian sandalwood (Santalum album L.). Forests, 14(6), 1076. https://doi.org/10.3390/f14061076
E Sobhy, S., G Aseel, D., M Abo-Kassem, E.-E., A Sewelam, N., M Saad-Allah, K., A Samy, M., et al. (2023). Priming of wheat plant with weed extracts, calcium and salicylic acid for contribution to alleviating the oxidative stress imposed by Fusarium graminearum and lead toxicity. Novel Research in Microbiology Journal, 7(2), 1932-1965. https://doi.org/10.21608/nrmj.2023.294938
Ellouzi, H., Sghayar, S., & Abdelly, C. (2017). H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. Journal of Plant Physiology, 210, 38-50. https://doi.org/10.1016/j.jplph.2016.11.014
Faisal, S., Muhammad, S., Luqman, M., Hasnain, M., Rasool, A., Awan, M. U. F., et al. (2023). Effects of priming on seed germination, physico-chemistry and yield of late sown wheat crop (Triticum aestivum L.). Polish Journal of Environmental Studies, 32(2). https://doi.org/10.15244/pjoes/155970
Farooq, M., Romdhane, L., Al Sulti, M. K., Rehman, A., Al‐Busaidi, W. M., & Lee, D. J. (2020). Morphological, physiological and biochemical aspects of osmopriming‐induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2), 176-186. https://doi.org/10.1111/jac.12384
Farooq, M., Usman, M., Nadeem, F., ur Rehman, H., Wahid, A., Basra, S. M., et al. (2019). Seed priming in field crops: potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731-771. https://doi.org/10.1071/CP18604
Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13(1), 45-55. https://doi.org/10.1016/j.jssas.2013.01.001
Feghhenabi, F., Hadi, H., Khodaverdiloo, H., & Van Genuchten, M. T. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231, 106022. https://doi.org/10.1016/j.agwat.2020.106022
Forough, M., Navabpour, S., Ebrahimie, E., Ebadi, A. A., & Kiani, D. (2018). Evaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice. Journal of Plant Molecular Breeding, 6(2), 27-37.
Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93-100. https://doi.org/10.1104/pp.110.166181
García-López, J., Niño-Medina, G., Olivares-Sáenz, E., Lira-Saldivar, R., Barriga-Castro, E., Vázquez-Alvarado, R., et al. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants, 8(8), 254. https://doi.org/10.3390/plants8080254
Ghasemi, A., Farzaneh, S., Moharramnejad, S., Sharifi, R. S., Youesf, A. F., Telesinski, A., et al. (2022). Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Scientific Reports, 12(1), 14648. https://doi.org/10.1038/s41598-022-18229-1
Hasan, M., Salam, M., Chowdhury, M., Sultana, M., & Islam, N. (2016). Effect of osmopriming on germination of rice seed. Bangladesh Journal of Agricultural Research, 41(3), 451-460. https://doi.org/10.3329/bjar.v41i3.29717
Hosen, I., Moonmoon, S., Hannan, A., Hoque, M. N., Shaila, S., Islam, S. K. T., et al. (2023). Seed priming influences on yield and protein content of wheat sown at different time. Archives of Agriculture and Environmental Science, 8(2), 214-220. https://doi.org/10.26832/24566632.2023.0802018
Hua-long, L., Han-jing, S., Jing-guo, W., Yang, L., De-tang, Z., & Hong-wei, Z. (2014). Effect of seed soaking with exogenous proline on seed germination of rice under salt stress. Journal of Northeast Agricultural University (English Edition), 21(3), 1-6. https://doi.org/10.1016/S1006-8104(14)60062-3
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. https://doi.org/10.1016/j.jplph.2015.12.011
Islam, R., Mukherjee, A., & Hossin, M. (2012). Effect of osmopriming on rice seed germination and seedling growth. Journal of the Bangladesh Agricultural University, 10(452-2016-35564), 15-20. https://doi.org/10.3329/jbau.v10i1.12013
Janda, T., Darko, É., Shehata, S., Kovács, V., Pál, M., & Szalai, G. (2016). Salt acclimation processes in wheat. Plant Physiology and Biochemistry, 101, 68-75. https://doi.org/10.1016/j.plaphy.2016.01.025
Kaczmarek, M., Fedorowicz-Strońska, O., Głowacka, K., Waśkiewicz, A., & Sadowski, J. (2017). CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum, 39, 1-11. https://doi.org/10.1007/s11738-016-2336-y
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., et al. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1-11. https://doi.org/10.1007/s11738-016-2113-y
Kanjevac, M., Jakovljević, D., Todorović, M., Stanković, M., Ćurčić, S., & Bojović, B. (2022). Improvement of germination and early growth of radish (Raphanus sativus L.) through modulation of seed metabolic processes. Plants, 11(6), 757. https://doi.org/10.3390/plants11060757
Kavi Kishor, P. B., Suravajhala, P., Rathnagiri, P., & Sreenivasulu, N. (2022). Intriguing role of proline in redox potential conferring high temperature stress tolerance. Frontiers in Plant Science, 13, 867531. https://doi.org/10.3389/fpls.2022.867531
Kawatra, M., Kaur, K., & Kaur, G. (2019). Effect of osmo priming on sucrose metabolism in spring maize, during the period of grain filling, under limited irrigation conditions. Physiology and Molecular Biology of Plants, 25, 1367-1376. https://doi.org/10.1007/s12298-019-00706-z
Khaing, M., Ultra Jr, V., & Chul Lee, S. (2020). Seed priming influence on growth, yield, and grain biochemical composition of two wheat cultivars. Journal of Agricultural Science and Technology, 22(3), 875-888.
Lemmens, E., Deleu, L. J., De Brier, N., De Man, W. L., De Proft, M., Prinsen, E., et al. (2019). The impact of hydro-priming and osmo-priming on seedling characteristics, plant hormone concentrations, activity of selected hydrolytic enzymes, and cell wall and phytate hydrolysis in sprouted wheat (Triticum aestivum L.). ACS omega, 4(26), 22089-22100. https://doi.org/10.1021/acsomega.9b03210
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd. https://doi.org/10.1042/bst0110591
Lobato, A., Luz, L., Costa, R., Santos Filho, B., Meirelles, A., Oliveira Neto, C., et al. (2009). Silicon exercises influence on nitrogen compounds in pepper subjected to water deficit. Research Journal of Biological Sciences, 4(9), 1048-1055.
Magné, C., Saladin, G., & Clément, C. (2006). Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera L. Chemosphere, 62(4), 650-657. https://doi.org/10.1016/j.chemosphere.2005.04.119
Mamedi, A., Sharifzadeh, F., Maali-Amiri, R., Divargar, F., & Rasoulnia, A. (2022). Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process. Physiology and Molecular Biology of Plants, 28(1), 251-274. https://doi.org/10.1007/s12298-022-01125-3
Marta, B., Szafrańska, K., & Posmyk, M. M. (2016). Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science, 7, 575. https://doi.org/10.3389/fpls.2016.00575
Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
Mehboob, N., Yasir, T. A., Hussain, S., Farooq, S., Naveed, M., & Hussain, M. (2022). Osmopriming combined with boron-tolerant bacteria (Bacillus sp. MN54) improved the productivity of desi chickpea under rainfed and irrigated conditions. Agriculture, 12(8), 1269. https://doi.org/10.3390/agriculture12081269
Mim, T. F., Anwar, M. P., Ahmed, M., Sriti, N., Moni, E. H., Hasan, A. K., et al. (2021). Competence of different priming agents for increasing seed germination, seedling growth and vigor of wheat. Fundamental and Applied Agriculture, 6(4), 444–459-444–459.
Mirmazloum, I., Kiss, A., Erdélyi, É., Ladányi, M., Németh, É. Z., & Radácsi, P. (2020). The Effect of osmopriming on seed germination and early seedling characteristics of Carum carvi L. Agriculture, 10(4), 94. https://doi.org/10.3390/agriculture10040094
Mirza, S. R. (2021). 23. Seed priming enhanced seed germination traits of Wheat under water, salt and heat stress. Pure and Applied Biology (PAB), 4(4), 650-658. https://doi.org/10.19045/bspab.2015.44025
Moosavi, A., Tavakkol Afshari, R., Sharif-Zadeh, F., & Aynehband, A. (2009). Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. Journal of Food, Agriculture and Environment, 7(3-4), 353-358.
Mouradi, M., Bouizgaren, A., Farissi, M., Latrach, L., Qaddoury, A., & Ghoulam, C. (2016). Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Medicago sativa L.)–rhizobia symbiosis under drought stress. Scientia Horticulturae, 213, 232-242. https://doi.org/10.1016/j.scienta.2016.11.002
Mousavi, A., Pourakbar, L., Moghaddam, S. S., & Popović-Djordjević, J. (2021). The effect of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress. Journal of Environmental Chemical Engineering, 9(4), 105456. https://doi.org/10.1016/j.jece.2021.105456
Nikalje, G. C., Variyar, P., Joshi, M., Nikam, T., & Suprasanna, P. (2018). Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. PLoS One, 13(4), e0193394. https://doi.org/10.1371/journal.pone.0193394
Pavani, K., Divya, V., Veena, I., Aditya, M., & Devakinandan, G. (2014). Influence of bioengineered zinc nanoparticles and zinc metal on Cicer arietinum seedlings growth. Asian Journal of Agriculture and Biology, 2, 216-223.
Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905-927. https://doi.org/10.1080/01904167.2012.663443
Rai-Kalal, P., & Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160, 341-351. https://doi.org/10.1016/j.plaphy.2021.01.032
Rehman, A., Farooq, M., Ullah, A., Nawaz, A., ud Din, M. M., & Shahzad, B. (2022). Seed priming with zinc sulfate and zinc chloride affects physio-biochemical traits, grain yield and biofortification of bread wheat (Triticum aestivum). Crop and Pasture Science, 73(5), 449-460. https://doi.org/10.1071/CP21194
Rosińska, A., Andrzejak, R., & Kakkerla, V. (2023). Effect of Osmopriming with melatonin on germination, vigor and health of Daucus carota L. seeds. Agriculture, 13(4), 749. https://doi.org/10.3390/agriculture13040749
Salleh, M. S., Nordin, M. S., & Puteh, A. B. (2020). Germination performance and biochemical changes under drought stress of primed rice seeds. Seed Science and Technology, 48(3), 333-343. https://doi.org/10.15258/sst.2020.48.3.02
Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in plant science, 21(4), 329-340. https://doi.org/10.1016/j.tplants.2015.11.003
Sharma, P., Sirhindi, G., Singh, A. K., Kaur, H., & Mushtaq, R. (2017). Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense. Physiology and Molecular Biology of Plants, 23(4), 809-816. https://doi.org/10.1007/s12298-017-0461-8
Sherin, G., Aswathi, K. R., & Puthur, J. T. (2022). Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress, 4, 100079. https://doi.org/10.1016/j.stress.2022.100079
Sheteiwy, M. S., Ulhassan, Z., Qi, W., Lu, H., AbdElgawad, H., Minkina, T., et al. (2022). Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. Frontiers in Plant Science, 13, 886862. https://doi.org/10.3389/fpls.2022.886862
Singhal, R. K., Pandey, S., & Bose, B. (2021). Seed priming with Mg (NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress, 2, 100037. https://doi.org/10.1016/j.stress.2021.100037
Siyar, S., Sami, S., Muhammad, Z., & Majeed, A. (2020). Seed priming: Implication in agriculture to manage salinity stress in crops. New Frontiers in Stress Management for Durable Agriculture, 269-280. https://doi.org/10.1007/978-981-15-1322-0_16
Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D’Souza, S. F. (2010). Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum, 32(6), 1135-1144. https://doi.org/10.1007/s11738-010-0505-y
Tohidi, B., Rahimmalek, M., & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry, 220, 153-161. https://doi.org/10.1016/j.foodchem.2016.09.203
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117. https://doi.org/10.1021/jf9801973
Wang, X., Liu, H., Yu, F., Hu, B., Jia, Y., Sha, H., et al. (2019). Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports, 9(1), 8543. https://doi.org/10.1038/s41598-019-44958-x
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60-67.
Xu, Y., Zhou, Y., Hong, S., Xia, Z., Cui, D., Guo, J., et al. (2013). Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. PLoS One, 8(11), e78098. https://doi.org/10.1371/journal.pone.0078098
Yarra, R. (2019). The wheat NHX gene family: potential role in improving salinity stress tolerance of plants. Plant Gene, 18, 100178. https://doi.org/10.1016/j.plgene.2019.100178
Yavari, A., Habibi, G., Abedini, M., & Bakhshi Khaniki, G. (2022). The effect of screening and optimization of osmopriming of wheat seeds (Triticum aestivumL.) using surface-response method. Journal of Iranian Plant Ecophysiological Research.
Zhang, Y., Luan, Q., Jiang, J., & Li, Y. (2021). Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science, 12, 735275. https://doi.org/10.3389/fpls.2021.735275
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Afagh YAVARI, Ghader HABIBI, Masoumeh ABEDINI, Gholamreza BAKHSHI KHANIKI
This work is licensed under a Creative Commons Attribution 4.0 International License.