Comparative analysis of antioxidant potential in leaf, stem, and root of Paederia foetida L.

Authors

  • Tasnima HUSNA Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
  • Mohammed MOHI-UD-DIN Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
  • Md. Mehedi HASAN Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
  • Anika NAZRAN Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
  • Haider Iqbal KHAN Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
  • Jahidul HASSAN Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
  • Md. Neamul Hasan SHOVON Palli Karma-Sahayak Foundation (PKSF), Dhaka, Bangladesh
  • Totan Kumar GHOSH Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh

DOI:

https://doi.org/10.14720/aas.2023.119.2.13320

Keywords:

medicinal plant, antioxidants, free radicals, reactive oxygen species, oxidative stress

Abstract

Paederia foetida L. is widely used for the treatment of myriad ailments. Thus, searching for plant parts having greater antioxidant potential would make it easy to get suitable materials for herbal drugs. The present effort was made to explore the antioxidant potentials in the plant parts of P. foetida grown under natural conditions by means of physiological and biochemical analyses. The young leaves showed the highest reservoir of non-enzymatic antioxidants such as chlorophylls (0.96 mg g-1), carotenoids (0.43 mg g-1), anthocyanins (53.99 µg g-1), phenolics (728.24 µg g-1), flavonoids (4178.05 µg g-1), and proline (1.46 µmol g-1) as compared to others. Total antioxidant activity was found to be the highest in young leaves (84.82 %) followed by young stems (80.24 %) and matured leaves (79.78 %). Analysis of enzymatic antioxidants resulted in the superior activity of ascorbate peroxidase (13.58 µmol min-1 mg-1) and glutathione S-transferase (3409 nmol min-1 mg-1) in young leaves whereas the highest rate of catalase (409.85 µmol min-1 mg-1) and peroxidase (3.5 nmol min-1 mg-1) activity were found in matured leaves. However, comparatively higher content of reactive oxygen species; hydrogen peroxide, and lipid peroxidation product; malondialdehyde in matured leaves than that of young leaves suggests that young leaf is a suitable source for herbal medicine.

Author Biography

  • Totan Kumar GHOSH, Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh

    Dr. Totan Kumar Ghosh

    Professor, Department of Crop Botany, Faculty of Agriculture & Director, Central Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, BANGLADESH
    Tel. +88-02-9205310-14 Extn. 2497
    Fax: +88-02-9205333, Cell: +88-01879962527

    Email: totan@bsmrau.edu.bd

    ORCID ID: 0000-0001-9765-0584

    Web: http://bsmrau.edu.bd/totan

References

Abdul-Hafeez, E. Y., Karamova, N. S., & Ilinskaya, O. N. (2014). Antioxidant activity and total phenolic compound content of certain medicinal plants. International Journal of Biosciences, 5(1), 213-22. https://doi.org/10.12692/ijb/5.9.213-222

Adetoro, K.O., Bolanle, J.D., Abdullahi, S.B., & Ahmed, O.A. (2013). In vivo antioxidant effect of aqueous root bark, stem bark and leaves extracts of Vitex doniana in CCl4 induced liver damage rats. Asian Pacific Journal of Tropical Biomedicine, 3(5), 395-400. https://doi.org/10.1016/S2221-1691(13)60083-0

Adetuyi, B. O., Adebayo, P. F., Olajide, P. A., Atanda, O. O., & Oloke, J. K. (2022). Involvement of free radicals in the ageing of cutaneous membrane. World News of Natural Sciences, 43, 11-37.

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

Alfarrayeh, I., Tarawneh, K., Almajali, D., & Al-Awaida, W. (2022). Evaluation of the antibacterial and antioxidant properties of the methanolic ex-tracts of four medicinal plants selected from Wadi Al-Karak/Jordan related to their phenolic contents. Research Journal of Pharmacy and Tech-nology, 15(5), 2110-2116. https://doi.org/10.52711/0974-360X.2022.00350

Andersen, O. M., & Markham, K. R. (2005). Flavonoids: chemistry, biochemistry and applications. Boca Raton: CRC press. https://doi.org/10.1201/9781420039443

Asada, K. (1992). Ascorbate peroxidase–a hydrogen peroxide‐scavenging enzyme in plants. Physiologia Plantarum, 85(2), 235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060

Blázovics, A. (2022). Food and food supplement antioxidants: Targets in human antioxidant system and effects on the production of endogenous antioxidants. In Antioxidants Effects in Health (pp. 837-850). Elsevier. https://doi.org/10.1016/B978-0-12-819096-8.00062-8

Bocker, R., & Silva, E. K. (2022). Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chemistry: X, 100398. https://doi.org/10.1016/j.fochx.2022.100398

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Bungau, S., Tit, D. M., Behl, T., Aleya, L., & Zaha, D. C. (2021). Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Current Opinion in Environmental Science & Health, 19, 100224. https://doi.org/10.1016/j.coesh.2020.10.012

Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences, 102(9), 3459-3464. https://doi.org/10.1073/pnas.0407960102

Choi, K., Ortega, M. T., Jeffery, B., Riviere, J. E., & Monteiro-Riviere, N. A. (2016). Oxidative stress response in canine in vitro liver, kidney and intesti-nal models with seven potential dietary ingredients. Toxicology Letters, 241, 49-59. https://doi.org/10.1016/j.toxlet.2015.11.012

Czech, A. S., Strzałka, K., Schurr, U., & Matsubara, S. (2009). Developmental stages of delayed-greening leaves inferred from measurements of chloro-phyll content and leaf growth. Functional Plant Biology, 36(7), 654-664. https://doi.org/10.1071/FP09035

Doğan, H. Ü. L. Y. A., Ercişli, S., Jurıkova, T., Temim, E., Leto, A., Hadziabulic, A., ... & Zia-Ul-Haq, M. (2014). Physicochemical and antioxidant charac-teristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxidation Communications, 37(4), 1005-1014.

Engin, A. B., Bukan, N., Kurukahvecioglu, O., Memis, L., & Engin, A. (2011). Effect of butylated hydroxytoluene (E321) pretreatment versus l-arginine on liver injury after sub-lethal dose of endotoxin administration. Environmental Toxicology and Pharmacology, 32(3), 457-464. https://doi.org/10.1016/j.etap.2011.08.014

Ghosh, P., Das, P., Mukherjee, R., Banik, S., Karmakar, S., & Chatterjee, S. (2018). Extraction and quantification of pigments from Indian traditional medicinal plants: A comparative study between tree, shrub, and herb. International Journal of Pharmaceutical Sciences and Research, 9(7), 3052-3059.

Ghosh, T. K., Tompa, N. H., Rahman, M. M., Mohi-Ud-Din, M., Al-Meraj, S. Z., Biswas, M. S., & Mostofa, M. G. (2021). Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adapta-tion to osmotic stress. PeerJ, 9, e12419. https://doi.org/10.7717/peerj.12419

Ghosh, T., Husna, T., Meraj, Z., & Nazran, A. (2021). Antioxidative and antidiabetic properties of Skunk Vine (Paederia foetida L.). Bangladesh Journal of Agricultural Research, 46(1), 1-12. https://doi.org/10.3329/bjar.v46i1.63309

Gómez, X., Sanon, S., Zambrano, K., Asquel, S., Bassantes, M., Morales, J. E., ... & Caicedo, A. (2021). Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. npj Microgravity, 7(1), 1-19. https://doi.org/10.1038/s41526-021-00162-8

Guerra-Araiza, C., Álvarez-Mejía, A. L., Sánchez-Torres, S., Farfan-García, E., Mondragón-Lozano, R., Pinto-Almazán, R., & Salgado-Ceballos, H. (2013). Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radical Research, 47(6-7), 451-462. https://doi.org/10.3109/10715762.2013.795649

Güneş, A., Kordali, Ş., Turan, M., & Bozhüyük, A. U. (2019). Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicinal plants. Industrial Crops and Products, 137, 208-213. https://doi.org/10.1016/j.indcrop.2019.05.042

Hasanuzzaman, M., Alam, M. M., Nahar, K., Ahamed, K. U., & Fujita, M. (2014). Exogenous salicylic acid alleviates salt stress-induced oxidative dam-age in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Australian Journal of Crop Science, 8(4), 631-639.

Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., ... & Fotopoulos, V. (2020). Reactive oxygen species and antiox-idant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681

Hassan, M. M., El Zowalaty, M. E., Lundkvist, Å., Järhult, J. D., Nayem, M. R. K., Tanzin, A. Z., ... & Ashour, H. M. (2021). Residual antimicrobial agents in food originating from animals. Trends in Food Science & Technology, 111, 141-150. https://doi.org/10.1016/j.tifs.2021.01.075

Hemantaranjan, A., Nishant Bhanu, A., Singh, M. N., Yadav, D. K., Patel, P. K., Singh, R., & Katiyar, D. (2014). Heat stress responses and thermotoler-ance. Advances in Plants and Agriculture Research, 1(3), 00012. https://doi.org/10.15406/apar.2014.01.00012

Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Sci-ence,55(1), 184-185. https://doi.org/10.1111/j.1365-2621.1990.tb06048.x

Horváth, E., Brunner, S., Bela, K., Papdi, C., Szabados, L., Tari, I., & Csiszár, J. (2015). Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 42(12), 1129-1140. https://doi.org/10.1071/FP15119

Hossain, M. A., Hasanuzzaman, M., & Fujita, M. (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16, 259-272. https://doi.org/10.1007/s12298-010-0028-4

Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800. https://doi.org/10.3389/fpls.2019.00800

Hughes, N. M., & Smith, W. K. (2007). Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. American Journal of Botany, 94(5), 784-790. https://doi.org/10.3732/ajb.94.5.784

Islam, R., Hoque, M. I. U., Ashrafuzzaman, M., & Uddin, M. N. (2018). Leaf phenolics and pigments along with their antioxidative potential in some medicinal plants. Asian-Australasian Journal of Food Safety and Security, 2(2), 86-92. https://doi.org/10.3329/aajfss.v2i2.55914

John, B., Sulaiman, C. T., Satheesh, G., & Reddy, V. R. K. (2014). Total phenolics and flavonoids in selected medicinal plants from Kerala. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 406-408.

Joshi, R., Rana, A., Kumar, V., Kumar, D., Padwad, Y. S., Yadav, S. K., & Gulati, A. (2017). Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities. Journal of Food Science and Technology, 54(7), 1953-1963. https://doi.org/10.1007/s13197-017-2631-7

Karmakar, U. K., Akter, S., & Sultana, S. (2020). Investigation of antioxidant, analgesic, antimicrobial, and anthelmintic activity of the aerial parts of Paederia foetida (Family: Rubiaceaea). Jordan Journal of Pharmaceutical Sciences, 13(2).

Kaul, S., Sharma, S. S., & Mehta, I. K. (2008). Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids, 34, 315-320. https://doi.org/10.1007/s00726-006-0407-x

Kavi Kishor, P. B., Hima Kumari, P., Sunita, M. S. L., & Sreenivasulu, N. (2015). Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers in Plant Science, 6, 544. https://doi.org/10.3389/fpls.2015.00544

Khairullah, A. R., Solikhah, T. I., Ansori, A. N. M., Hanisia, R. H., Puspitarani, G. A., Fadholly, A., & Ramandinianto, S. C. (2021). Medicinal importance of Kaempferia galanga L. (Zingiberaceae): A comprehensive review. Journal of Herbmed Pharmacology, 10(3), 281-288. https://doi.org/10.34172/jhp.2021.32

Khan, A. A., Rahmani, A. H., Aldebasi, Y. H., & Aly, S. M. (2014). Biochemical and pathological studies on peroxidases–An updated review. Global Journal of Health Science, 6(5), 87. https://doi.org/10.5539/gjhs.v6n5p87

Khan, A., Hassan, S. M., & Mughal, S. S. (2022). Biological evaluation of a herbal plant: Cichrorium intybus. Science and Technology, 6(2), 26-38.

Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antiox-idant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021. https://doi.org/10.3390/molecules26134021

Krishnan, N., Dickman, M. B., & Becker, D. F. (2008). Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radical Biology and Medicine, 44(4), 671-681. https://doi.org/10.1016/j.freeradbiomed.2007.10.054

Kumar, S., & Trivedi, P. K. (2018). Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science, 9, 751. https://doi.org/10.3389/fpls.2018.00751

Kumar, U., Mishra, M., & Prakash, V. (2012). Assessment of antioxidant enzymes and free radical scavenging activity of selected medicinal plants. Free Radicals and Antioxidants, 2(3), 58-63. https://doi.org/10.5530/ax.2012.3.8

Labrou, N. E., Papageorgiou, A. C., Pavli, O., & Flemetakis, E. (2015). Plant GSTome: structure and functional role in xenome network and plant stress response. Current Opinion in Biotechnology, 32, 186-194. https://doi.org/10.1016/j.copbio.2014.12.024

Lal, P., & Kasera, P. K. (2011). Proline accumulation in Blepharis sindica T. Anders: A vulnerable medicinal plant growing in the Indian Thar desert. Asian Journal of Plant Science & Research, 2(5), 588-592.

Law, B. M., Waye, M. M., So, W. K., & Chair, S. Y. (2017). Hypotheses on the potential of rice bran intake to prevent gastrointestinal cancer through the modulation of oxidative stress. International Journal of Molecular Sciences, 18(7), 1352. https://doi.org/10.3390/ijms18071352

Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591

Mahmoud, E., Starowicz, M., Ciska, E., Topolska, J., & Farouk, A. (2022). Determination of volatiles, antioxidant activity, and polyphenol content in the postharvest waste of Ocimum basilicum L. Food Chemistry, 375, 131692. https://doi.org/10.1016/j.foodchem.2021.131692

Murray, J. R., & Hackett, W. P. (1991). Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology, 97(1), 343-351. https://doi.org/10.1104/pp.97.1.343

Nahar, K., Rhaman, M. S., Parvin, K., Bardhan, K., Marques, D. N., García-Caparrós, P., & Hasanuzzaman, M. (2022). Arsenic-induced oxidative stress and antioxidant defense in plants. Stresses, 2(2), 179-209. https://doi.org/10.3390/stresses2020013

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.

Naliwajski, M., & Skłodowska, M. (2021). The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress. Cells, 10(3), 609. https://doi.org/10.3390/cells10030609

Nayak, R., Panda, A., Pradhan, C., Samanta, L., & Sahoo, S. (2015). Characterization of Abutilon indicum L. antioxidant potential and Paederia foetida L. International Journal of Science, Technology & Management, 4(4), 95-104.

Nazarudin, M. F., Yasin, I. S. M., Mazli, N. A. I. N., Saadi, A. R., Azizee, M. H. S., Nooraini, M. A., ... & Fakhrulddin, I. M. (2022). Preliminary screening of antioxidant and cytotoxic potential of green seaweed, Halimeda opuntia (Linnaeus) Lamouroux. Saudi Journal of Biological Sciences, 29(4), 2698-2705. https://doi.org/10.1016/j.sjbs.2021.12.066

Ojha, S., Raj, A., Roy, A., & Roy, S. (2018). Extraction of total phenolics, flavonoids, and tannins from Paederia foetida L. leaves and their relation with antioxidant activity. Pharmacognosy Journal, 10(3). https://doi.org/10.5530/pj.2018.3.88

Okamoto, C., Tsuda, K., Yamaguchi, D., Sato, S., Pemberton, R. W., & Yukawa, J. (2008). Life history and host specificity of the Japanese flea beetles Trachyaphthona sordida and T. nigrita (Coleoptera: Chrysomelidae), potential biological control agents against skunk vine, Paederia foetida (Ru-biaceae), in the southeastern parts of the United States and Hawaii. Entomological Science, 11(2), 143-152. https://doi.org/10.1111/j.1479-8298.2008.00266.x

Okoye, Z. S. C. (2021). Protective effects of dietary polyphenolic phytochemicals on nutrition transition-related cardiovascular disease. International Journal of Biomedical and Health Sciences, 3(1).

Pandey, L. K., & Sharma, K. R. (2022). Analysis of phenolic and flavonoid content, α-amylase Inhibitory and free radical scavenging activities of some medicinal plants. The Scientific World Journal, 2022. https://doi.org/10.1155/2022/4000707

Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. https://doi.org/10.3390/antiox9060505

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity, https://doi.org/10.1155/2017/8416763

Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spec-troscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 975(3), 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0

Puzerytė, V., Viškelis, P., Balčiūnaitienė, A., Štreimikytė, P., Viškelis, J., & Urbonavičienė, D. (2022). Aralia cordata Thunb. as a source of bioactive compounds: phytochemical composition and antioxidant activity. Plants, 11(13), 1704. https://doi.org/10.3390/plants11131704

Rainha, N., Lima, E., Baptista, J., & Rodrigues, C. (2011). Antioxidant properties, total phenolic, total carotenoid, and chlorophyll content of anatomi-cal parts of Hypericum foliosum. Journal of Medicinal Plants Research, 5(10), 1930-1940.

Reis, J. F., Monteiro, V. V. S., de Souza Gomes, R., do Carmo, M. M., da Costa, G. V., Ribera, P. C., & Monteiro, M. C. (2016). Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. Journal of Translational Medicine, 14(1), 1-16. https://doi.org/10.1186/s12967-016-1076-5

Rosli, N. H. M., Shahrul, N. A. M., Darimi, S. N. L., Hassan, M. A. M., Samsudin, A. N., & Razihan, S. N. (2021). Phytochemical compounds and antioxi-dant capacity of Paederia foetida. Gading Journal of Science and Technology, 4(1), 46-54.

Rutnakornpituk, B., & Boonlue, S. (2013). Investigation of antioxidant activity of active compounds in ethyl acetate crude extract from stem of Paederia foetida L. International Journal of Science, 10(1), 38-47.

Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277

Sahoo, M., & Bhatnagar, S. (2015). A comparative analysis of phytochemical and antioxidant profile of Paedaria foetida. L wild and cultivated varie-ties. World Journal of Pharmaceutical Research, 5(1), 1329-1337.

Sarker, U., & Oba, S. (2020). Nutrients, minerals, pigments, phytochemicals, and radical scavenging activity in Amaranthus blitum leafy vegetables. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-59848-w

Satapathy, S., & Pattnaik, G. (2020). Preliminary phytochemical screening and FTIR analysis of an Indian medicinal herb: Paederia Foetida (Prasa-rini). Executive Editor, 11(01), 641. https://doi.org/10.37506/v11/i1/2020/ijphrd/193895

Shah, A. A., & Gupta, A. (2020). Antioxidants in health and disease with their capability to defend pathogens that attack apple species of Kashmir. Plant Antioxidants and Health, 1-26. https://doi.org/10.1007/978-3-030-45299-5_13-1

Sharma, R. K., Sharma, N., Kumar, U., & Samant, S. S. (2022). Antioxidant properties, phenolics and flavonoids content of some economically im-portant plants from North-west Indian Himalaya. Natural Product Research, 36(6), 1565-1569. https://doi.org/10.1080/14786419.2021.1881959

Sharma, R., Raghuvanshi, R., Kumar, R., Thakur, M. S., Kumar, S., Patel, M. K., ... & Saxena, S. (2022). Current findings and future prospective of high-value trans Himalayan medicinal plant Lycium ruthenicum Murr: a systematic review. Clinical Phytoscience, 8(1), 1-20. https://doi.org/10.1186/s40816-021-00328-7

Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43-50. https://doi.org/10.1016/j.tplants.2008.10.007

Soni, R. K., Irchhaiya, R., Dixit, V., & Alok, S. (2013). Paederia foetida L.: Phytochemistry, pharmacological and traditional uses. International Journal of Pharmaceutical Sciences and Research, 4(12), 4525.

Sunil, L., & Shetty, N. P. (2022). Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology, 106(5-6), 1783-1798. https://doi.org/10.1007/s00253-022-11835-z

Suparmi, S., Fasitasari, M., Martosupono, M., & Mangimbulude, J. C. (2016). Comparisons of curative effects of chlorophyll from Sauropus androgynus (L) Merr leaf extract and Cu-chlorophyllin on sodium nitrate-induced oxidative stress in rats. Journal of Toxicology, 2016. https://doi.org/10.1155/2016/8515089

Thakur, M., Singh, K., & Khedkar, R. (2020). Phytochemicals: extraction process, safety assessment, toxicological evaluations, and regulatory issues. Functional and Preservative Properties of Phytochemicals, (pp. 341-361). Academic Press. https://doi.org/10.1016/B978-0-12-818593-3.00011-7

Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biologi-cal challenges. Analytical Biochemistry, 524, 13-30. https://doi.org/10.1016/j.ab.2016.10.021

Uddin, R., Aktar, R., Hasan, S., Mazumder, E., & Alam, M. (2014). In vitro free radical scavenging and membrane stabilizing activity of Paederia foetida leaves. Research & Reviews: Journal of Pharmacology and Toxicological Studies, 2(1), 21-28.

Upadhyaya, S. (2013). Screening of phytochemicals, nutritional status, antioxidant and antimicrobial activity of Paederia foetida Linn. from different localities of Assam, Indian Journal of Pharmacy Research,7(1), 139-141. https://doi.org/10.1016/j.jopr.2013.01.015

Vaňková, K., Marková, I., Jašprová, J., Dvořák, A., Subhanová, I., Zelenka, J., ... & Vítek, L. (2018). Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/4069167

Vitolo, M. (2021). Decomposition of hydrogen peroxide by catalase. World Journal of Pharmacy and Pharmaceutical Sciences, 10, 47.

Wondrak, G. T., Jacobson, M. K., & Jacobson, E. L. (2005). Identification of quenchers of photoexcited states as novel agents for skin photoprotection. Journal of Pharmacology and Experimental Therapeutics, 312(2), 482-491. https://doi.org/10.1124/jpet.104.075101

Zhang, N., & Jing, P. (2022). Anthocyanins in Brassicaceae: Composition, stability, bioavailability, and potential health bene-fits. Critical Reviews in Food Science and Nutrition, 62(8), 2205-2220. https://doi.org/10.1080/10408398.2020.1852170

Downloads

Published

27. 06. 2023

Issue

Section

Original Scientific Article

How to Cite

HUSNA, T., MOHI-UD-DIN, M., HASAN, M. M., NAZRAN, A., KHAN, H. I., HASSAN, J., SHOVON, M. N. H., & GHOSH, T. K. (2023). Comparative analysis of antioxidant potential in leaf, stem, and root of Paederia foetida L. Acta Agriculturae Slovenica, 119(2), 1–15. https://doi.org/10.14720/aas.2023.119.2.13320

Similar Articles

1-10 of 749

You may also start an advanced similarity search for this article.