Exogenous nano-selenium alleviates heat-induced oxidative damage in date palm seedlings by modulating the plant hormones and antioxidant defense

Authors

  • Hussein Jasim SHAREEF Basrah university

DOI:

https://doi.org/10.14720/aas.2024.120.2.13490

Keywords:

nano-selenium, antioxidant enzymes, ascorbic acid, abscisic acid, malondialdehyde, phytohormones

Abstract

Crops are destroyed by extreme heat, which also limits their growth and yield. The present study sought to determine whether selenium (0, 15, or 30 mg l-1) impacted ‘Barhee’ date palm seedling’s development under heat stress (in the field and canopy temperature). The growth parameters, chlorophyll and relative water content, ascorbic acid, catalase activity, and phytohormones in seedlings were reduced under heat stress. At the same time, ascorbate peroxidase activity, proline, phenols, malondialdehyde, hydrogen peroxide, and abscisic acid in seedlings increased. Enhancing growth features, chlorophyll content, relative water content, ascorbic acid, catalase activity, plant hormones, proline, phenols, and ascorbate peroxidase activity with exogenous nano-Selenium (15 mg l-1) reduced the negative impacts of heat stress. Date palm seedlings can be protected from high temperatures by using nano-selenium. Selenium reverses heat-induced oxidative damage by enhancing the antioxidative mechanism, improving reactive oxygen species scavenging, lowering lipid peroxidation, and modulating plant hormone levels.

Author Biography

  • Hussein Jasim SHAREEF, Basrah university

    Department of Date Palm Research Center, University of Basrah, Basrah

References

Abbas, K. F. (2018). The alleviation activity of selenium against cadmium phytotoxicity in date palm Phoenix dactylifera L . Basrah Journal of Date Palm Research, 17(1–2), 1–15.

Abdellatif, Y. M. R., & Ibrahim, M. T. S. (2018). Non-enzymatic anti-oxidants potential in enhancing Hibiscus sabdariffa L. Tolerance to oxidative stress. International Journal of Botany, 14(1), 43–58. https://doi.org/10.3923/ijb.2018.43.58

Al-Zahrani, H. S., Alharby, H. F., & Fahad, S. (2022). Antioxidative defense system, hormones, and metabolite accumulation in different plant parts of two contrasting rice cultivars as influenced by plant growth regulators under heat stress. Frontiers in Plant Science, 13(May). https://doi.org/10.3389/fpls.2022.911846

Alahmad, K., Xia, W., Jiang, Q., & Xu, Y. (2022). Effect of the degree of hydrolysis on nutritional, functional, and morphological characteristics of protein hydrolysate produced from bighead carp (Hypophthalmichthys nobilis) using ficin enzyme. Foods, 11(9), 1320. https://doi.org/10.3390/foods11091320

Alharby, H. F., Hasanuzzaman, M., Al-zahrani, H. S., & Hakeem, K. R. (2021). Exogenous selenium mitigates salt stress in soybean by improving growth , physiology , glutathione homeostasis and antioxidant defense. Phyton-International Journal of Experimental Botany, 1–16. https://doi.org/10.32604/phyton.2021.013657

Awan, S. A., Ilyas, N., Khan, I., Raza, M. A., Rehman, A. U., Rizwan, M., Rastogi, A., Tariq, R., & Brestic, M. (2020). Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants, 9(7), 1–14. https://doi.org/10.3390/plants9070878

Balal, R. M., Shahid, M. A., Javaid, M. M., Iqbal, Z., Anjum, M. A., Garcia-Sanchez, F., & Mattson, N. S. (2016). The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiologiae Plantarum, 38(6). https://doi.org/10.1007/s11738-016-2174-y

Banerjee, A., & Roychoudhury, A. (2019). Role of Selenium in Plants Against Abiotic Stresses: Phenological and Molecular Aspects. In Molecular Plant Abiotic Stress: Biology and Biotechnology (pp. 123–133). https://doi.org/10.1002/9781119463665.ch7

Bates, L., Waldren, S., R. P. Teare, & Rapid, I. D. (1973). Determination of free proline for water stress studies. Plant Soil, 39, 205–207. https://doi.org/10.1007/BF00018060

Davey, M. W., Stals, E., Panis, B., Keulemans, J., & Swennen, R. L. (2005). High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 347(2), 201–207. https://doi.org/10.1016/j.ab.2005.09.041

Elsheery, N. I., Sunoj, V. S. J., Wen, Y., Zhu, J. J., Muralidharan, G., & Cao, K. F. (2020). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry, 149 (October 2019), 50–60. https://doi.org/10.1016/j.plaphy.2020.01.035

Fernandez, V., Francisco, G.-S., de Edafología Biología Aplicada del Segura, C., Ferenc Fodor, S., Bocchini, M., Ciancaleoni, S., Fontanella, M. C., Palmerini, C. A., Beone, G. M., Onofri, A., Negri, V., Marconi, G., Albertini, E., & Businelli, D. (2018). Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing ahigher drought tolerance. Frontiers in Plant Science, 9, 389. https://doi.org/10.3389/fpls.2018.00389

Gupta, M., & Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7(January), 1–14. https://doi.org/10.3389/fpls.2016.02074

Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6). https://doi.org/10.3390/horticulturae7060132

Hasanuzzaman, M., Nahar, K., Alam, M. M., & Fujita, M. (2014). Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biological Trace Element Research, 161(3), 297–307. https://doi.org/10.1007/s12011-014-0120-7

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001

Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., & Hasanuzzaman, M. (2018). Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant Physiology and Biochemistry, 127, 446–456. https://doi.org/10.1016/j.plaphy.2018.04.018

Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., Burritt, D. J., Fujita, M., & Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science, 6(June), 1–19. https://doi.org/10.3389/fpls.2015.00420

Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-40362-7

Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., & Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7(July 2016), 1–14. https://doi.org/10.1038/srep42039

Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10(October). https://doi.org/10.3389/fpls.2019.01429

Labeeuw, L., Khey, J., Bramucci, A. R., Atwal, H., De La Mata, A. P., Harynuk, J., & Case, R. J. (2016). Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Frontiers in Microbiology, 7, 828. https://doi.org/10.3389/fmicb.2016.00828

Lehotai, N., Kolbert, Z., Pető, A., Feigl, G., Ördög, A., Kumar, D., Tari, I., & Erdei, L. (2012). Selenite-induced hormonal and signalling mechanisms methylation and chromatin patterning during root growth of Arabidopsis thaliana L. Journal of Experimental Botany, 63(15), 695–709. https://doi.org/10.1093/jxb/err313

Li, D., Zhou, C., Ma, J., Wu, Y., Kang, L., An, Q., Zhang, J., Deng, K., Li, J. Q., & Pan, C. (2021). Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone signal transduction in pepper plants. Journal of Nanobiotechnology, 19(1), 1–14. https://doi.org/10.1186/s12951-021-01061-6

Lichtenthaler, Hartmut K. Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591

Luwe, M. W. F., Takahama, U. H., & Heber, U. (1993). Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiology, 101(3), 969–976. https://doi.org/10.1104/pp.101.3.969

Malerba, M., & Cerana, R. (2018). Effect of selenium on the responses induced by heat stress in plant cell cultures. Plants, 7(3), 1–10. https://doi.org/10.3390/plants7030064

Malheiros, R. S. P., Costa, L. C., Ávila, R. T., Pimenta, T. M., Teixeira, L. S., Brito, F. A. L., Zsögön, A., Araújo, W. L., & Ribeiro, D. M. (2019). Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta, 250(1), 333–345. https://doi.org/10.1007/s00425-019-03175-6

Manafi, H., Baninasab, B., Gholami, M., Talebi, M., & Khanizadeh, S. (2021). Exogenous melatonin alleviates heat‐induced oxidative damage in strawberry (Fragaria × ananassa Duch. cv. Ventana) Plant. Journal of Plant Growth Regulation, 41(January), 52–64. https://doi.org/10.1007/s00344-020-10279-x

Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology Biology, 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010

Missaoui, A. M., Malinowski, D. P., Pinchak, W. E., & Kigel, J. (2017). Insights into the drought and heat avoidance mechanism in summer-dormant mediterranean tall fescue. Frontiers in Plant Science, 8(November), 1–13. https://doi.org/10.3389/fpls.2017.01971

Mohi‐ud‐din, M., Siddiqui, M. N., Rohman, M. M., Jagadish, S. V. K., Ahmed, J. U., Hassan, M. M., Hossain, A., & Islam, T. (2021). Physiological and biochemical dissection reveals a trade‐off between antioxidant capacity and heat tolerance in bread wheat (Triticum aestivum L.). Antioxidants, 10(3), 1–26. https://doi.org/10.3390/antiox10030351

Paciolla, C., Fortunato, S., Dipierro, N., Paradiso, A., De Leonardis, S., Mastropasqua, L., & de Pinto, M. C. (2019). Vitamin C in plants: From functions to biofortification. Antioxidants, 8(11), 519. https://doi.org/10.3390/antiox8110519

Pour-Aboughadareh, A., Omidi, M., Naghavi, M. R., Etminan, A., Mehrabi, A. A., Poczai, P., & Bayat, H. (2019). Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy, 9(9). https://doi.org/10.3390/agronomy9090522

Radić, S., Cvjetko, P., Glavaš, K., Roje, V., Pevalek-Kozlina, B., & Pavlica, M. (2009). Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry, 28(1), 189–196. https://doi.org/10.1897/08-188.1

Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47–54. https://doi.org/10.1016/j.jplph.2014.11.008

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 34(8), 1–29. https://doi.org/10.3390/plants8020034

Ryu, H., & Cho, Y. G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58(3), 147–155. https://doi.org/10.1007/s12374-015-0103-z

Saddhe, A. A., Kundan, K., & Padmanabh, D. (2017). Mechanism of ABA Signaling in Response to Abiotic Stress in Plants. In Mechanism of Plant Hormone Signaling under Stress (pp. 173–195). https://doi.org/10.1002/9781118889022.ch8

Safari, M., Oraghi Ardebili, Z., & Iranbakhsh, A. (2018). Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 40(6), 117. https://doi.org/10.1007/s11738-018-2694-8

SAFFARYAZDI, A., LAHOUTI, M., GANJEALI, A., & BAYAT, H. (2012). Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Notulae Scientia Biologicae, 4(4), 95–100. https://doi.org/10.15835/nsb448029

Šamec, D., Karalija, E., Šola, I., & Vujˇ, V. (2021). The role of polyphenols in abiotic stress response : The influence of molecular structure. Plants, 8;10 (1), 118. https://doi:10.3390/plants10010118. PMID: 33430128; PMCID: PMC7827553

Servet, C., Ghelis, T., Richard, L., Zilberstein, A., & Savoure, A. (2012). Proline dehydrogenase: a key enzyme in controlling cellular homeostasis Caroline. Frontiers in Bioscience, 17(1), 607–620. https://doi.org/10.7767/9783205793670-toc

Shalaby, T. A., Abd-Alkarim, E., El-Aidy, F., Hamed, E. S., Sharaf-Eldin, M., Taha, N., El-Ramady, H., Bayoumi, Y., & dos Reis, A. R. (2021). Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 212(January), 111962. https://doi.org/10.1016/j.ecoenv.2021.111962

Shareef, H. J., & Al-Khayri, J. M. (2021). Salt and drought stress exhibits oxidative stress and modulated protein patterns in roots and leaves of date palm (Phoenix dactylifera L.). Acta Agriculturae Slovenica, 117(1), 1–10. https://doi.org/10.14720/aas.2021.117.1.1829

Somalraju, A., Mccallum, J. L., Main, D., Peters, R. D., & Fofana, B. (2022). Foliar selenium application reduces late blight severity and incidence in potato and acts as a pathogen growth inhibitor and elicitor of induced plant defence. Canadian Journal of Plant Pathology, 44(1), 39–55. https://doi.org/10.1080/07060661.2021.1954093

Tabatabai, M. A. (1998). Handbook of Reference Methods for Plant Analysis. In Crop Science, 38 (6). https://doi.org/10.2135/cropsci1998.0011183x003800060050x

Tang, Y., Wang, L., Ma, C., Liu, J., Liu, B., & Li, H. (2011). The use of HPLC in determination of endogenous hormones in anthers of bitter melon. Journal of Life Science, 5, 139–142.

Walaa, A., El-Shalakany, M. A., Shatlah, M. H., Atteia, H. A., & Sror, H. A. M. (2010). Selenium induces antioxidant defensive enzymes and. Arab Universities Journal of Agricultural Sciences, 18(1), 65–75. https://doi.org/10.21608/ajs.2010.14917

Wang, C., Cheng, T., Liu, H., Zhou, F., Zhang, J., Zhang, M., Liu, X., Shi, W., & Cao, T. (2021). Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. Journal of Environmental Sciences (China), 103, 336–346. https://doi.org/10.1016/j.jes.2020.11.005

Wang, Y. H., & Irving, H. R. (2011). Developing a model of plant hormone interactions. Plant Signaling and Behavior, 6(4), 494–500. https://doi.org/10.4161/psb.6.4.14558

Waterman, P. G., & Mole, S. (1994). Analysis of Phenolic Plant Metabolites. Blackwell Sscientific Publications (p. 235).

Yaish, M. W. W. (2015). Short communication proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genetics and Molecular Research, 14(3), 9943–9950. https://doi.org/10.4238/2015.August.19.30

Zhang, J., Wei, J., Li, D., Kong, X., Rengel, Z., Chen, L., Yang, Y., Cui, X., & Chen, Q. (2017). The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Frontiers in Plant Science, 8(October), 1–9. https://doi.org/10.3389/fpls.2017.01757

Zhang, Z. W., Dong, Y. Y., Feng, L. Y., Deng, Z. L., Xu, Q., Tao, Q., Wang, C. Q., Chen, Y. E., Yuan, M., & Yuan, S. (2020). Selenium enhances cadmium accumulation capability in two mustard family species—Brassica napus and B. juncea. Plants, 9(7), 1–13. https://doi.org/10.3390/plants9070904

Zhu, J. K. (2016). Abiotic stresssignaling and responses in plants. Cell, 167(2), 313–324. https://doi.org/10.1016/j.cell.2016.08.029

Downloads

Published

16. 07. 2024

Issue

Section

Original Scientific Article

How to Cite

SHAREEF, H. J. (2024). Exogenous nano-selenium alleviates heat-induced oxidative damage in date palm seedlings by modulating the plant hormones and antioxidant defense. Acta Agriculturae Slovenica, 120(2), 1–12. https://doi.org/10.14720/aas.2024.120.2.13490