Exogenous nano-selenium alleviates heat-induced oxidative damage in date palm seedlings by modulating the plant hormones and antioxidant defense
DOI:
https://doi.org/10.14720/aas.2024.120.2.13490Keywords:
nano-selenium, antioxidant enzymes, ascorbic acid, abscisic acid, malondialdehyde, phytohormonesAbstract
Crops are destroyed by extreme heat, which also limits their growth and yield. The present study sought to determine whether selenium (0, 15, or 30 mg l-1) impacted ‘Barhee’ date palm seedling’s development under heat stress (in the field and canopy temperature). The growth parameters, chlorophyll and relative water content, ascorbic acid, catalase activity, and phytohormones in seedlings were reduced under heat stress. At the same time, ascorbate peroxidase activity, proline, phenols, malondialdehyde, hydrogen peroxide, and abscisic acid in seedlings increased. Enhancing growth features, chlorophyll content, relative water content, ascorbic acid, catalase activity, plant hormones, proline, phenols, and ascorbate peroxidase activity with exogenous nano-Selenium (15 mg l-1) reduced the negative impacts of heat stress. Date palm seedlings can be protected from high temperatures by using nano-selenium. Selenium reverses heat-induced oxidative damage by enhancing the antioxidative mechanism, improving reactive oxygen species scavenging, lowering lipid peroxidation, and modulating plant hormone levels.
References
Abbas, K. F. (2018). The alleviation activity of selenium against cadmium phytotoxicity in date palm Phoenix dactylifera L . Basrah Journal of Date Palm Research, 17(1–2), 1–15.
Abdellatif, Y. M. R., & Ibrahim, M. T. S. (2018). Non-enzymatic anti-oxidants potential in enhancing Hibiscus sabdariffa L. Tolerance to oxidative stress. International Journal of Botany, 14(1), 43–58. https://doi.org/10.3923/ijb.2018.43.58
Al-Zahrani, H. S., Alharby, H. F., & Fahad, S. (2022). Antioxidative defense system, hormones, and metabolite accumulation in different plant parts of two contrasting rice cultivars as influenced by plant growth regulators under heat stress. Frontiers in Plant Science, 13(May). https://doi.org/10.3389/fpls.2022.911846
Alahmad, K., Xia, W., Jiang, Q., & Xu, Y. (2022). Effect of the degree of hydrolysis on nutritional, functional, and morphological characteristics of protein hydrolysate produced from bighead carp (Hypophthalmichthys nobilis) using ficin enzyme. Foods, 11(9), 1320. https://doi.org/10.3390/foods11091320
Alharby, H. F., Hasanuzzaman, M., Al-zahrani, H. S., & Hakeem, K. R. (2021). Exogenous selenium mitigates salt stress in soybean by improving growth , physiology , glutathione homeostasis and antioxidant defense. Phyton-International Journal of Experimental Botany, 1–16. https://doi.org/10.32604/phyton.2021.013657
Awan, S. A., Ilyas, N., Khan, I., Raza, M. A., Rehman, A. U., Rizwan, M., Rastogi, A., Tariq, R., & Brestic, M. (2020). Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants, 9(7), 1–14. https://doi.org/10.3390/plants9070878
Balal, R. M., Shahid, M. A., Javaid, M. M., Iqbal, Z., Anjum, M. A., Garcia-Sanchez, F., & Mattson, N. S. (2016). The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiologiae Plantarum, 38(6). https://doi.org/10.1007/s11738-016-2174-y
Banerjee, A., & Roychoudhury, A. (2019). Role of Selenium in Plants Against Abiotic Stresses: Phenological and Molecular Aspects. In Molecular Plant Abiotic Stress: Biology and Biotechnology (pp. 123–133). https://doi.org/10.1002/9781119463665.ch7
Bates, L., Waldren, S., R. P. Teare, & Rapid, I. D. (1973). Determination of free proline for water stress studies. Plant Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
Davey, M. W., Stals, E., Panis, B., Keulemans, J., & Swennen, R. L. (2005). High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 347(2), 201–207. https://doi.org/10.1016/j.ab.2005.09.041
Elsheery, N. I., Sunoj, V. S. J., Wen, Y., Zhu, J. J., Muralidharan, G., & Cao, K. F. (2020). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry, 149 (October 2019), 50–60. https://doi.org/10.1016/j.plaphy.2020.01.035
Fernandez, V., Francisco, G.-S., de Edafología Biología Aplicada del Segura, C., Ferenc Fodor, S., Bocchini, M., Ciancaleoni, S., Fontanella, M. C., Palmerini, C. A., Beone, G. M., Onofri, A., Negri, V., Marconi, G., Albertini, E., & Businelli, D. (2018). Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing ahigher drought tolerance. Frontiers in Plant Science, 9, 389. https://doi.org/10.3389/fpls.2018.00389
Gupta, M., & Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7(January), 1–14. https://doi.org/10.3389/fpls.2016.02074
Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6). https://doi.org/10.3390/horticulturae7060132
Hasanuzzaman, M., Nahar, K., Alam, M. M., & Fujita, M. (2014). Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biological Trace Element Research, 161(3), 297–307. https://doi.org/10.1007/s12011-014-0120-7
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001
Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., & Hasanuzzaman, M. (2018). Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant Physiology and Biochemistry, 127, 446–456. https://doi.org/10.1016/j.plaphy.2018.04.018
Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., Burritt, D. J., Fujita, M., & Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science, 6(June), 1–19. https://doi.org/10.3389/fpls.2015.00420
Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-40362-7
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., & Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7(July 2016), 1–14. https://doi.org/10.1038/srep42039
Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10(October). https://doi.org/10.3389/fpls.2019.01429
Labeeuw, L., Khey, J., Bramucci, A. R., Atwal, H., De La Mata, A. P., Harynuk, J., & Case, R. J. (2016). Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Frontiers in Microbiology, 7, 828. https://doi.org/10.3389/fmicb.2016.00828
Lehotai, N., Kolbert, Z., Pető, A., Feigl, G., Ördög, A., Kumar, D., Tari, I., & Erdei, L. (2012). Selenite-induced hormonal and signalling mechanisms methylation and chromatin patterning during root growth of Arabidopsis thaliana L. Journal of Experimental Botany, 63(15), 695–709. https://doi.org/10.1093/jxb/err313
Li, D., Zhou, C., Ma, J., Wu, Y., Kang, L., An, Q., Zhang, J., Deng, K., Li, J. Q., & Pan, C. (2021). Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone signal transduction in pepper plants. Journal of Nanobiotechnology, 19(1), 1–14. https://doi.org/10.1186/s12951-021-01061-6
Lichtenthaler, Hartmut K. Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
Luwe, M. W. F., Takahama, U. H., & Heber, U. (1993). Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiology, 101(3), 969–976. https://doi.org/10.1104/pp.101.3.969
Malerba, M., & Cerana, R. (2018). Effect of selenium on the responses induced by heat stress in plant cell cultures. Plants, 7(3), 1–10. https://doi.org/10.3390/plants7030064
Malheiros, R. S. P., Costa, L. C., Ávila, R. T., Pimenta, T. M., Teixeira, L. S., Brito, F. A. L., Zsögön, A., Araújo, W. L., & Ribeiro, D. M. (2019). Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta, 250(1), 333–345. https://doi.org/10.1007/s00425-019-03175-6
Manafi, H., Baninasab, B., Gholami, M., Talebi, M., & Khanizadeh, S. (2021). Exogenous melatonin alleviates heat‐induced oxidative damage in strawberry (Fragaria × ananassa Duch. cv. Ventana) Plant. Journal of Plant Growth Regulation, 41(January), 52–64. https://doi.org/10.1007/s00344-020-10279-x
Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology Biology, 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010
Missaoui, A. M., Malinowski, D. P., Pinchak, W. E., & Kigel, J. (2017). Insights into the drought and heat avoidance mechanism in summer-dormant mediterranean tall fescue. Frontiers in Plant Science, 8(November), 1–13. https://doi.org/10.3389/fpls.2017.01971
Mohi‐ud‐din, M., Siddiqui, M. N., Rohman, M. M., Jagadish, S. V. K., Ahmed, J. U., Hassan, M. M., Hossain, A., & Islam, T. (2021). Physiological and biochemical dissection reveals a trade‐off between antioxidant capacity and heat tolerance in bread wheat (Triticum aestivum L.). Antioxidants, 10(3), 1–26. https://doi.org/10.3390/antiox10030351
Paciolla, C., Fortunato, S., Dipierro, N., Paradiso, A., De Leonardis, S., Mastropasqua, L., & de Pinto, M. C. (2019). Vitamin C in plants: From functions to biofortification. Antioxidants, 8(11), 519. https://doi.org/10.3390/antiox8110519
Pour-Aboughadareh, A., Omidi, M., Naghavi, M. R., Etminan, A., Mehrabi, A. A., Poczai, P., & Bayat, H. (2019). Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy, 9(9). https://doi.org/10.3390/agronomy9090522
Radić, S., Cvjetko, P., Glavaš, K., Roje, V., Pevalek-Kozlina, B., & Pavlica, M. (2009). Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry, 28(1), 189–196. https://doi.org/10.1897/08-188.1
Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47–54. https://doi.org/10.1016/j.jplph.2014.11.008
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 34(8), 1–29. https://doi.org/10.3390/plants8020034
Ryu, H., & Cho, Y. G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58(3), 147–155. https://doi.org/10.1007/s12374-015-0103-z
Saddhe, A. A., Kundan, K., & Padmanabh, D. (2017). Mechanism of ABA Signaling in Response to Abiotic Stress in Plants. In Mechanism of Plant Hormone Signaling under Stress (pp. 173–195). https://doi.org/10.1002/9781118889022.ch8
Safari, M., Oraghi Ardebili, Z., & Iranbakhsh, A. (2018). Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 40(6), 117. https://doi.org/10.1007/s11738-018-2694-8
SAFFARYAZDI, A., LAHOUTI, M., GANJEALI, A., & BAYAT, H. (2012). Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Notulae Scientia Biologicae, 4(4), 95–100. https://doi.org/10.15835/nsb448029
Šamec, D., Karalija, E., Šola, I., & Vujˇ, V. (2021). The role of polyphenols in abiotic stress response : The influence of molecular structure. Plants, 8;10 (1), 118. https://doi:10.3390/plants10010118. PMID: 33430128; PMCID: PMC7827553
Servet, C., Ghelis, T., Richard, L., Zilberstein, A., & Savoure, A. (2012). Proline dehydrogenase: a key enzyme in controlling cellular homeostasis Caroline. Frontiers in Bioscience, 17(1), 607–620. https://doi.org/10.7767/9783205793670-toc
Shalaby, T. A., Abd-Alkarim, E., El-Aidy, F., Hamed, E. S., Sharaf-Eldin, M., Taha, N., El-Ramady, H., Bayoumi, Y., & dos Reis, A. R. (2021). Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 212(January), 111962. https://doi.org/10.1016/j.ecoenv.2021.111962
Shareef, H. J., & Al-Khayri, J. M. (2021). Salt and drought stress exhibits oxidative stress and modulated protein patterns in roots and leaves of date palm (Phoenix dactylifera L.). Acta Agriculturae Slovenica, 117(1), 1–10. https://doi.org/10.14720/aas.2021.117.1.1829
Somalraju, A., Mccallum, J. L., Main, D., Peters, R. D., & Fofana, B. (2022). Foliar selenium application reduces late blight severity and incidence in potato and acts as a pathogen growth inhibitor and elicitor of induced plant defence. Canadian Journal of Plant Pathology, 44(1), 39–55. https://doi.org/10.1080/07060661.2021.1954093
Tabatabai, M. A. (1998). Handbook of Reference Methods for Plant Analysis. In Crop Science, 38 (6). https://doi.org/10.2135/cropsci1998.0011183x003800060050x
Tang, Y., Wang, L., Ma, C., Liu, J., Liu, B., & Li, H. (2011). The use of HPLC in determination of endogenous hormones in anthers of bitter melon. Journal of Life Science, 5, 139–142.
Walaa, A., El-Shalakany, M. A., Shatlah, M. H., Atteia, H. A., & Sror, H. A. M. (2010). Selenium induces antioxidant defensive enzymes and. Arab Universities Journal of Agricultural Sciences, 18(1), 65–75. https://doi.org/10.21608/ajs.2010.14917
Wang, C., Cheng, T., Liu, H., Zhou, F., Zhang, J., Zhang, M., Liu, X., Shi, W., & Cao, T. (2021). Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. Journal of Environmental Sciences (China), 103, 336–346. https://doi.org/10.1016/j.jes.2020.11.005
Wang, Y. H., & Irving, H. R. (2011). Developing a model of plant hormone interactions. Plant Signaling and Behavior, 6(4), 494–500. https://doi.org/10.4161/psb.6.4.14558
Waterman, P. G., & Mole, S. (1994). Analysis of Phenolic Plant Metabolites. Blackwell Sscientific Publications (p. 235).
Yaish, M. W. W. (2015). Short communication proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genetics and Molecular Research, 14(3), 9943–9950. https://doi.org/10.4238/2015.August.19.30
Zhang, J., Wei, J., Li, D., Kong, X., Rengel, Z., Chen, L., Yang, Y., Cui, X., & Chen, Q. (2017). The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Frontiers in Plant Science, 8(October), 1–9. https://doi.org/10.3389/fpls.2017.01757
Zhang, Z. W., Dong, Y. Y., Feng, L. Y., Deng, Z. L., Xu, Q., Tao, Q., Wang, C. Q., Chen, Y. E., Yuan, M., & Yuan, S. (2020). Selenium enhances cadmium accumulation capability in two mustard family species—Brassica napus and B. juncea. Plants, 9(7), 1–13. https://doi.org/10.3390/plants9070904
Zhu, J. K. (2016). Abiotic stresssignaling and responses in plants. Cell, 167(2), 313–324. https://doi.org/10.1016/j.cell.2016.08.029
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hussein Jasim SHAREEF
This work is licensed under a Creative Commons Attribution 4.0 International License.