Phytochemical profile and allelopathic potential of Haloxylon scoparium Pomel (Chenopodiaceae) from Algerian Sahara
DOI:
https://doi.org/10.14720/aas.2023.119.4.13609Keywords:
phytochemical profile, allelopathic potential, Haloxylon scoparium, LC-MS-MS analysis, allelochemicals, Algerian SaharaAbstract
The aim of the present work is to study the chemical composition, to estimate the phenolic compounds content and to evaluate the potential allelopathic effects of the Haloxylon scoparium Pomel. Phytochemical tests revealed that Haloxylon scoparium contains tannins, saponins, coumarins, alkaloids, flavonoids and steroids. Furthermore, it contains high levels of total phenolic (588.33 mg GAE 100 g-1) and flavonoids (95.45 mg QE 100 g-1) contents. Moreover, LC-MS-MS analysis allowed us to determine their chemical composition. The results of this characterization confirm the presence of vanillin, naringenin, folic acid, maleic acid, benzoic acid, myricetin, qwuercetin, beta-carotene, butylhydroxyanisole (BHA), butylated hydroxytoluene (BHT), rutin, cafeic acid, hydroxy-4-coumarine, ascorbic acid, and gallic acid. The allelopathic effect was studied on seed germination and seedling growth of four weed species. The bioassays were performed using different concentrations (1 %, 2.5 %, 5 % and 10 %) against a negative control. The seed germination, shoot and root length of weed species were completely inhibited at the highest concentrations (10 %, 5 %). However, the lower concentrations exhibited lesser inhibition percentages on the germination and the seedling growth. The phytochemical results and the significant allelopathic effects of the plant extract suggest that this species may offer new substances for the biocontrol of weeds.
References
Allaoui, M., Cheriti, A., Chebouat, E., Dadamoussa, B., & Gherraf, N. (2016). Comparative study of the antioxidant activity and phenols and flavonoids contents of the ethyl acetate extracts from two Saharan Chenopodiaceae: Haloxylon scoparium and. Algerian Journal of Arid and Environment, 6(1), 71-79. http://dspace.univ-ouargla.dz/jspui/handle/123456789/10561
Batish, D. R., Arora, K., Singh, H. P., & Kohli, R. K. (2007). Potential utilization of dried powder of Tagetes minuta as a natural herbicide for managing rice weeds. Crop Protection, 26(4), 566-571. https://doi.org/10.1016/j.cropro.2006.05.008
Ben Amor, S., Mekious, S., Allal Benfekih, L., Abdellattif, M. H., Boussebaa, W., Almalki, F. A. ... & Kawsar, S. M. (2022). Phytochemical characterization and bioactivity of different honey samples collected in the pre-Saharan region in Algeria. Life, 12(7), 927. https://doi.org/10.3390/life12070927
Benkherara, S., Bordjiba, O., Harrat, S., & Djahra, A. B. (2021). Antidiabetic potential and chemical constituents of Haloxylon scoparium aerial part, an endemic plant from Southeastern Algeria. International Journal of Secondary Metabolite, 8(4), 398-413. https://doi.org/10.21448/ijsm.990569
Benkrief, R., Brum-Bousquet, M., Tillequin, F., & Koch, M. (1990, January). Alkaloids and flavonoid from aerial parts of Hammada articulata ssp. scoparia. In Annales Pharmaceutiques Françaises, 48(4), 219-224.
Bhadoria, P. B. S. (2011). Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture, 1(1), 7-20. https://doi.org/10.9734/AJEA/2011/002
Bhowmik, P. C., & Doll, J. D. (1984). Allelopathic effects of annual weed residues on growth and nutrient uptake of corn and soybeans 1. Agronomy Journal, 76(3), 383-388. https://doi.org/10.2134/agronj1984.00021962007600030008x
Bouaziz, A., Mhalla, D., Zouari, I., Jlaiel, L., Tounsi, S., Jarraya, R., & Trigui, M. (2016). Antibacterial and antioxidant activities of Hammada scoparia extracts and its major purified alkaloids. South African Journal of Botany, 105, 89-96. https://doi.org/10.1016/j.sajb.2016.03.012
Bourogaa, E., Bertrand, J., Despeaux, M., Jarraya, R., Fabre, N., Payrastre, L., ... & Racaud-Sultan, C. (2011). Hammada scoparia flavonoids and rutin kill adherent and chemoresistant leukemic cells. Leukemia Research, 35(8), 1093-1101.
https://doi.org/10.1016/j.leukres.2010.12.011
Bourogaa, E., Jarraya, R. M., Nciri, R., Damak, M., & Elfeki, A. (2014). Protective effects of aqueous extract of Hammada scoparia against hepatotoxicity induced by ethanol in the rat. Toxicology and Industrial Health, 30(2), 113-122. https://doi.org/10.1177/0748233712452602
Chao, H. C., Najjaa, H., Villareal, M. O., Ksouri, R., Han, J., Neffati, M., & Isoda, H. (2013). Arthrophytum scoparium inhibits melanogenesis through the down‐regulation of tyrosinase and melanogenic gene expressions in B 16 melanoma cells. Experimental Dermatology, 22(2), 131-136. https://doi.org/10.1111/exd.12089
Chehma, A. (2006). Catalogue des plantes spontanées du Sahara septentrional algérien.
Cliffe, S., Fawer, M. S., Maier, G., Takata, K., & Ritter, G. (1994). Enzyme assays for the phenolic content of natural juices. Journal of Agricultural and Food Chemistry, 42(8), 1824-1828. https://doi.org/10.1021/jf00044a048
Côme, D. (1970). Obstacles to germination. Obstacles to Germination, (6).
Da Silva, R. F., Bressan, R. T., Zilli, B. M., Pilatti, M. A., de Souza, S. N. M., & Santos, R. F. (2016). Allelopathic effect of aqueous extract of fresh leaf castor beans (Ricinus communis L.) applied to the beginning stage of soy (CL.) and safflower (Carthamus tinctorius L.). African Journal of Biotechnology, 15(49), 2787-2793. https://doi.org/10.5897/AJB2016.15707
Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
Drioichea, A., Benhlima, N., Kharchoufa, S., El-Makhoukhi, F., Mehanned, S., Adadi, I., ... & Zaira, T. (2019). Antimicrobial and antiradical properties of Hammada scoparia (Pomel) Iljin. African Journal of Traditional, Complementary and Alternative Medicines, 16(2), 1-14. https://doi.org/10.21010/Ajtcam.v16n2.1
Feeny, P. (1976). Plant apparency and chemical defense. In Biochemical interaction between plants and insects (pp. 1-40). Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2646-5_1
Haida, S., & Kribii, A. (2020). Chemical composition, phenolic content and antioxidant capacity of Haloxylon scoparium extracts. South African Journal of Botany, 131, 151-160. https://doi.org/10.1016/j.sajb.2020.01.037
Jaradat, N., Hussen, F., & Al Ali, A. (2015). Preliminary phytochemical screening, quantitative estimation of total flavonoids, total phenols and antioxidant activity of Ephedra alata Decne. Journal of Materials and Environmental Science, 6(6), 1771-1778.
Jarraya, R. M., Bouaziz, A., Hamdi, B., Salah, A., & Damak, M. (2008). N-methylisosalsoline from Hammada scoparia. Acta Crystallographica Section E: Structure Reports Online, 64(9), o1714-o1714. https://doi.org/10.1107/S160053680802477X
Karous, O., Aichi, H. Y., Jilani, I. B. H., & Ghrabi-Gammar, Z. (2020). Volatiles profiling, phytotoxic activity, and antioxidant potentiality of Hammada scoparia (Pomel) Iljin extracts from southern Tunisia.
Kemassi, A., Herouini, A., Hadj, S. A., Cherif, R., & Elhadj, M. O. (2019). Effet insecticide des extraits aqueux d’Euphorbia guyoniana (Euphorbiaceae) récoltée dans Oued Sebseb (Sahara Algerien) sur le Tribolium castaneum. Lebanese Science Journal, 20(1), 55-70. DOI : 10.22453/LSJ-020.1.055-070
Kim, D. O., Chun, O. K., Kim, Y. J., Moon, H. Y., & Lee, C. Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry, 51(22), 6509-6515. https://doi.org/10.1021/jf0343074
Labouriau, L. (1983). A germinacao das sementes. Washington: Organizacao dos Estados Americanos, 170 p. Monografias Científicas.
Lachkar, N., Lamchouri, F., Bouabid, K., Boulfia, M., Senhaji, S., Stitou, M., & Toufik, H. (2021). Mineral composition, phenolic content, and in vitro antidiabetic and antioxidant properties of aqueous and organic extracts of Haloxylon scoparium aerial parts. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/9011168
Li, Z. H., Wang, Q., Ruan, X., Pan, C. D., & Jiang, D. A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933-8952. https://doi.org/10.3390/molecules15128933
Madike, Lerato Nellvecia., Takaidza, S., & Pillay, M. (2017). Preliminary phytochemical screening of crude extracts from the leaves, stems, and roots of Tulbaghia violacea. International Journal of Pharmacognosy and Phytochemical Research, 9(10), 1300-1308. doi : 10.25258/phyto.v9i10.10453
Mezghani-Jarraya, R., Hammami, H., Ayadi, A., & Damak, M. (2009). Molluscicidal activity of Hammada scoparia (Pomel) Iljin leaf extracts and the principal alkaloids isolated from them against Galba truncatula. Memórias do Instituto Oswaldo Cruz, 104, 1035-1038. https://doi.org/10.1590/S0074-02762009000700017
Monem, R., Mirsharifi, S. M., & Mirtaheri, S. M. (2012). Evaluation allelopathic effects of barley shoot aqueous extract on germination, seedling growth, cell membrance permeability and malondialdehyde content of corn weeds. Advances in Environmental Biology, 2490-2496. https://link.gale.com/apps/doc/A335973881/AONE?u=anon~8aa8f0d1&sid=googleScholar&xid=76a21652
Mseddi, K., Alghamdi, A., & Ibrahim, N. (2018). Allelopathic potential of Citrullus colocynthis (L.) Schrad to control ryegrass weed in barley crop. Allelopathy Journal, 45(2), 197-212. https://doi.org/10.26651/allelo.j/2018-45-2-1187
Muller, C. H. (1965). Inhibitory terpenes volatilized from Salvia shrubs. Bulletin of the Torrey Botanical Club, 38-45. https://doi.org/10.2307/2483311
Nasrine, S., El-Darier,S.M & EL-TAHER, H.M. (2013). Allelopathic effect of Euphorbia guyoniana aqueous extract and their potential uses as natural herbicides. Sains Malaysiana, 42(10), 1501-1504.
Naz, R., & Bano, A. (2013). Effects of Calotropis procera and Citrullus colosynthis on germination and seedling growth of maize. Allelopathy Journal, 31(1), 105.
Olofsdotter, M. (2001). Rice—a step toward use of allelopathy. Agronomy Journal, 93(1), 3-8. https://doi.org/10.2134/agronj2001.9313
Otmani, R., Khene, B., Kemassi, A., Araba, F., Benaceur, F., & Houyou, Z. (2022). Phytochemical Screening, Allelopathic and Bioherbicidal Potentialities of Euphorbia Guyoniana Boiss. and Reut. Leaf Extract. Al-Qadisiyah Journal for Agriculture Sciences, 12(2), 26-34. DOI: 10.33794/qjas.2022.134311.1053
Qasem, J. R. (2002). Allelopathic effects of selected medicinal plants on Amaranthus retroflexus and Chenopodium murale. Allelopathy Journal, 10(2), 105-122.
Saadaoui, E., Martín Gómez, J. J., Ghazel, N., Romdhane, C. B., Massoudi, N., & Cervantes, E. (2015). Allelopathic effects of aqueous extracts of Ricinus communis L. on the germination of six cultivated species. http://dx.doi.org/10.9734/IJPSS/2015/16483
Salah, H. B., Jarraya, R., Martin, M. T., Veitch, N. C., Grayer, R. J., Simmonds, M. S., & Damak, M. (2002). Flavonol triglycosides from the leaves of Hammada scoparia (P OMEL) I LJIN. Chemical and Pharmaceutical Bulletin, 50(9), 1268-1270. https://doi.org/10.1248/cpb.50.1268
Salhi, N. (2011). Allelochemicals from some medicianal and aromatique plants and theirpotontale use as biohererbicides (Doctoral dissertation, Université de Annaba-Badji Mokhtar).
Sarić-Krsmanović, M., Gajić Umiljendić, J., Radivojević, L., Šantrić, L., Potočnik, I., & Đurović-Pejčev, R. (2019). Bio-herbicidal effects of five essential oils on germination and early seedling growth of velvet leaf (Abutilon theophrasti Medik.). Journal of Environmental Science and Health, Part B, 54(4), 247-251. https://doi.org/10.1080/03601234.2018.1550309
Sathiyamoorthy, P., Lugasi-Evgi, H., Schlesinger, P., Kedar, I., Gopas, J., Pollack, Y., & Golan-Goldhirsh, A. (1999). Screening for cytotoxic and antimalarial activities in desert plants of the Negev and Bedouin market plant products. Pharmaceutical Biology, 37(3), 188-195. https://doi.org/10.1076/phbi.37.3.188.6298
Sathiyamoorthy, P., Lugasi-Evgi, H., Van-Damme, P., Abu-Rabia, A., Gopas, J., & Golan-Goldhirsh, A. (1997). Larvicidal activity in desert plants of the Negev and Bedouin market plant products. International Journal of Pharmacognosy, 35(4), 265-273. https://doi.org/10.1076/phbi.35.4.265.13314
Scavo, A., Restuccia, A., Pandino, G., Onofri, A., & Mauromicale, G. (2018). Allelopathic effects of Cynara cardunculus L. leaf aqueous extracts on seed germination of some Mediterranean weed species. Italian Journal of Agronomy, 13(2), 119-125. https://doi.org/10.4081/ija.2018.1021
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Weih, M., Didon, U. M. E., Rönnberg-Wästljung, A. C., & Björkman, C. (2008). Integrated agricultural research and crop breeding: Allelopathic weed control in cereals and long-term productivity in perennial biomass crops. Agricultural Systems, 97(3), 99-107. https://doi.org/10.1016/j.agsy.2008.02.009
Zeghada, F. Z. (2009). Activité allélopathique et analyse phytochimique (Doctoral dissertation, Université d’Oran1-Ahmed Ben Bella).
Zerriouh, M. (2015). Université Abou Bekr Belkaid.
Ziyyat, A., Ramdani, N., Bouanani, N. E. H., Vanderpas, J., Hassani, B., Boutayeb, A., ... & Legssyer, A. (2014). Epidemiology of hypertension and its relationship with type 2 diabetes and obesity in eastern Morocco. Springerplus, 3(1), 1-7.https://doi.org/10.1186/2193-1801-3-644
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Reguia OTMANI, Bachir KHENE, Abdellah KEMASSI , Fatna ARABA, Mohamed HARRAT, Mohamed YOUSFI
This work is licensed under a Creative Commons Attribution 4.0 International License.