Pluripotent stem cells and reprogramming in human and farm animals
DOI:
https://doi.org/10.14720/aas.2012.100.2.13688Abstract
The importance of pluripotent cells, which can differentiate in to different cell lineages and form an entire organism, is fundamental for understanding developmental biology including emerging diseases and offers potential for numerous applications in medicine and biotechnology. However, molecular mechanisms behind differentiation and de-differentiation (reprogramming) remain largely unknown. Until recently it was possible to obtain stem cells only from embryos in the early stages of development (embryonic stem cells – ESCs) or by using very inefficient and technically difficult method of somatic cell nuclear transfer (SCNT) that requires use of egg cells (oocytes). Both methods raised ethical concerns, especially when using human biological material. On the other hand, induced pluripotent stem cells (iPSCs) can be generated by direct reprogramming of differentiated adult somatic cells. iPSCs show similarities to ESCs and represent ethically acceptable and almost unlimited source of individuum-specific pluripotent cells. iPSCs are particularly important for development of regenerative medicine, disease modelling, drug development and testing, basic research, generation of transgenic animals, and for conservation of endangered species. However, before it is possible to exploit their potential in full, reprogramming processes should be investigated and understood in details and safe methods developed – that will enable production of genetically and epigenetically stable cells without tumorigenic potential. This article provides an overview of the field of iPSCs and addresses some of the latest achievements and applications of pluripotent cells in human and farm animals.
References
Ben-Nun I.F., Montague S.C., Houck M.L., Tran H.T., Garitaonandia I., Leonardo T.R., Wang Y.C., Charter S.J., Laurent L.C., Ryder O.A., Loring J.F. 2012. Induced pluripotent stem cells from highly endangered species. Nat Methods, 8: 829–31
Breton A., Sharma R., Diaz A.C., Parham A.G., Graham A., Neil C., Whitelaw C.B., Milne E. & Donadeu F.X. 2012. Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts. Stem Cells Dev [e-version, ahead of print].
Chun Y.S., Chaudhari P., Jang Y.Y. 2010. Applications of patientspecific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease. Int J Biol Sci, 6: 796–805
Do J.T., Han D.W., Scholer H.R. 2006. Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev, 2: 257–64
Esteban M.A., Xu J., Yang J., Peng M., Qin D., Li W., Jiang Z., Chen J., Deng K., Zhong M., Cai J., Lai L., Pei D. 2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem, 284: 17634–40
Gonzalez F., Boue S., Izpisua Belmonte J.C. 2011. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet, 12: 231–42
Gurdon J.B. 1962. Adult frogs derived from the nuclei of single somatic cells. Dev Biol, 4: 256–73
Hanna J., Wernig M., Markoulaki S., Sun C.W., Meissner A., Cassady J.P., Beard C., Brambrink T., Wu L.C., Townes T.M., Jaenisch R. 2007. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318: 1920–3
Huang B., Li T., Alonso-Gonzalez L., Gorre R., Keatley S., Green A., Turner P., Kallingappa P.K., Verma V., Oback B. 2011. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One, 6: e24501
Kim D., Kim C.H., Moon J.I., Chung Y.G., Chang M.Y., Han B.S., Ko S., Yang E., Cha K.Y., Lanza R., Kim K.S. 2009a. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4: 472–6
Kim J.B., Greber B., Arauzo-Bravo M.J., Meyer J., Park K.I., Zaehres H., Scholer H.R. 2009b. Direct reprogramming of human neural stem cells by OCT4. Nature, 461: 649–3
Kues W.A., Niemann H. 2004. The contribution of farm animals to human health. Trends Biotechnol, 22: 286–94
Liu J., Balehosur D., Murray B., Kelly J.M., Sumer H., Verma P.J. 2012. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 77: 338–46 e1
Malaver-Ortega L.F., Sumer H., Liu J., Verma P.J. 2012. The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology, 78, 8: 1749–62
Mitalipov S., Wolf D. 2009. Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 114: 185–99
Miyoshi N., Ishii H., Nagano H., Haraguchi N., Dewi D.L., Kano Y., Nishikawa S., Tanemura M., Mimori K., Tanaka F., Saito T., Nishimura J., Takemasa I., Mizushima T., Ikeda M., Yamamoto H., Sekimoto M., Doki Y., Mori M. 2011. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8: 633–8
Nagy K., Sung H.K., Zhang P.Z., Laflamme S., Vincent P., Agha- Mohammadi S., Woltjen K., Monetti C., Michael I.P., Smith L.C., Nagy A. 2011. Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts. Stem Cell Reviews and Reports, 7: 693–702 (Erratum: 8, 2012: 546)
Niemann H., Kues W.A. 2003. Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci, 79: 291–317
Noggle S., Fung H.L., Gore A., Martinez H., Satriani K.C., Prosser R., Oum K., Paull D., Druckenmiller S., Freeby M., Greenberg E., Zhang K., Goland R., Sauer M.V., Leibel R.L., Egli D. 2011. Human oocytes reprogram somatic cells to a pluripotent state. Nature, 478: 70–U81
Nowak-Imialek M., Kues W., Carnwath J.W., Niemann H. 2011. Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal, 17: 474–97
Okita K., Yamanaka S. 2011. Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B-Biological Sciences, 366: 2198–207
Pawar S.S., Malakar D., De A.K., Akshey Y.S. 2009. Stem celllike outgrowths from in vitro fertilized goat blastocysts. Indian J Exp Biol, 47: 635–42
Pera M.F. 2011. STEM CELLS: The dark side of induced pluripotency. Nature, 471: 46–7
Ren J., Pak Y., He L., Qian L., Gu Y., Li H., Rao L., Liao J., Cui C., Xu X., Zhou J., Ri H., Xiao L. 2011. Generation of hircineinduced pluripotent stem cells by somatic cell reprogramming. Cell Res, 21: 849–53
Robinton D.A., Daley G.Q. 2012. The promise of induced pluripotent stem cells in research and therapy. Nature, 481: 295–305
Sumer H., Liu J., Malaver-Ortega L.F., Lim M.L., Khodadadi K., Verma P.J. 2011. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci, 89: 2708–16
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131: 861–72
Takahashi K., Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663–76
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. 1998. Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–7
Turnpenny L. 2005. Embryo’s moral status is unaffected by alteration. Nature, 437: 26 Vierbuchen T., Wernig M. 2011. Direct lineage conversions: unnatural but useful? Nat Biotechnol, 29: 892–907
Wakayama T., Perry A.C.F., Zuccotti M., Johnson K.R., Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369–74
Warren L., Manos P.D., Ahfeldt T., Loh Y.H., Li H., Lau F., Ebina W., Mandal P.K., Smith Z.D., Meissner A., Daley G.Q., Brack A.S., Collins J.J., Cowan C., Schlaeger T.M., Rossi D.J. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7: 618–30
Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448: 318–24
West F.D., Terlouw S.L., Kwon D.J., Mumaw J.L., Dhara S.K., Hasneen K., Dobrinsky J.R., Stice S.L. 2010. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev, 19: 1211–20
Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–3
Woltjen K., Michael I.P., Mohseni P., Desai R., Mileikovsky M., Hamalainen R., Cowling R., Wang W., Liu P., Gertsenstein M., Kaji K., Sung H.K., Nagy A. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458: 766–70
Wu Z., Chen J., Ren J., Bao L., Liao J., Cui C., Rao L., Li H., Gu Y., Dai H., Zhu H., Teng X., Cheng L., Xiao L. 2009. Generation of pig induced pluripotent stem cells with a druginducible system. J Mol Cell Biol, 1: 46–54
Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin, II, Thomson J.A. 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324: 797– 801
Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318: 1917–20
Zhao X.Y., Li W., Lv Z., Liu L., Tong M., Hai T., Hao J., Guo C.L., Ma Q.W., Wang L., Zeng F., Zhou Q. 2009. iPS cells produce viable mice through tetraploid complementation. Nature, 461: 86–90
Downloads
Published
Issue
Section
License
Copyright (c) 2012 University of Ljubljana, Biotechnical Faculty, Department of Animal Science
This work is licensed under a Creative Commons Attribution 4.0 International License.