Effects of salicylic acid and its derivatives on plants, harmful and beneficial organisms and their interactions in the environment


  • Saša GAČNIK University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, Slovenia
  • Stanislav TRDAN University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, Slovenia
  • Maja MIKULIČ-PETKOVŠEK University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, Slovenia




salicylic acid, methyl salicylic acid, acetyl salicylic acid, biosinthesis, induced systemic resistance, plant protection


Global food production is forced to search for new approaches to protect plants from harmful organisms and environmental factors. One of the alternatives could be the use of salicylic acid (SA) and its derivatives. Overall, the effects of SA at the primary ecosystem level are encouraging, contributing to improved productivity and quality of many plants and improving tolerance to many stressors. The secondary level of effects of SA in the environment represents the effects on harmful organisms due to direct action and also the indirect effects of SA that occur due to morphological and physiological changes when the plant adapts to stressors. In many cases, SA has the effect of reducing infections, and it also acts as a deterrent to some pests. After being attacked by a pest, plants release volatile compounds into the environment, mainly SA derivatives such as methylated SA (MeSA). This attracts the natural enemies of pests, which could be used to protect plants from pests, as MeSA has been found to act as an attractant in many species. Salicylates have a very wide spectrum of action, which trigger various effects in the environment, which intertwine with each other and consequently affect several levels in the exosystem. In this article, we divided the effects of salicylates according to different levels in the environment, which gave us a broader insight into the potential use of salicylates in agriculture.


Abbasi, P. A., Ali, S., Braun, G., Bevis, E., & Fillmore, S. (2019). Reducing apple scab and frogeye or black rot infections with salicylic acid or its analogue on field-established apple trees. Canadian Journal of Plant Pathology, 41(3), 345-354. https://doi.org/10.1080/07060661.2019.1610070

Babalar, M., Asghari, M., Talaei, A., & Khosroshahi, A. (2007). Effect of pre-and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105(2), 449-453. https://doi.org/10.1016/j.foodchem.2007.03.021

Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5, 804. https://doi.org/10.3389/fpls.2014.00804

Bezemer, T. M., Wagenaar, R., Van Dam, N. M., & Wäckers, F. L. (2003). Interactions between above‐and belowground insect herbivores as mediated by the plant defense system. Oikos, 101(3), 555-562. https://doi.org/10.1034/j.1600-0706.2003.12424.x

B Blanch, G. P., Gómez-Jiménez, M. C., & Del Castillo, M. L. R. (2020). Exogenous salicylic acid improves phenolic content and antioxidant activity in table grapes. Plant Foods for Human Nutrition, 75(2), 177-183. https://doi.org/10.1007/s11130-019-00793-z

De Boer, J. G., & Dicke, M. (2004). The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. Journal of Chemical Ecology, 30(2), 255-271. https://doi.org/10.1023/B:JOEC.0000017976.60630.8c

Campbell, C. A. M., Pettersson, J., Pickett, J. A., Wadhams, L. J., & Woodcock, C. M. (1993). Spring migration of damson-hop aphid, Phorodon humuli (Homoptera, Aphididae), and summer host plant-derived semiochemicals released on feeding. Journal of Chemical Ecology, 19(7), 1569-1576. https://doi.org/10.1007/BF00984897

Chen, L., Wang, W. S., Wang, T., Meng, X. F., Chen, T. T., Huang, X. X., ... & Hou, B. K. (2019). Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance. Plant Physiology, 180(4), 2167-2181. https://doi.org/10.1104/pp.19.00091

Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal, 38(3), 432-447. https://doi.org/10.1111/j.1365-313X.2004.02054.x

da Rocha Neto, A. C., Luiz, C., Maraschin, M., & Di Piero, R. M. (2016). Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. International Journal of Food Microbiology, 221, 54-60. https://doi.org/10.1016/j.ijfoodmicro.2016.01.007

Dempsey, D. M. A., & Klessig, D. F. (2012). SOS–too many signals for systemic acquired resistance?. Trends inPplant Science, 17(9), 538-545. https://doi.org/10.1016/j.tplants.2012.05.011

Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists, 9. https://doi.org/10.1199/tab.0156

Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., & Posthumus, M. A. (1990). Plant strategies of manipulating predatorprey interactions through allelochemicals: prospects for application in pest control. Journal of Chemical Ecology, 16(11), 3091-3118. https://doi.org/10.1007/BF00979614

Dicke, M., Takabayashi, J., Posthumus, M. A., Schütte, C., & Krips, O. E. (1998). Plant—phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Experimental & Applied Acarology, 22(6), 311-333. https://doi.org/10.1023/A:1024528507803

Dieryckx, C., Gaudin, V., Dupuy, J. W., Bonneu, M., Girard, V., & Job, D. (2015). Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. Frontiers in Plant Science, 6, 859. https://doi.org/10.3389/fpls.2015.00859

Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science, 2(7), 266-274. https://doi.org/10.1016/S1360-1385(97)86349-2

Falcioni, T., Ferrio, J. P., Del Cueto, A. I., Giné, J., Achón, M. Á., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. European Journal of Plant Pathology, 138(2), 331-345. https://doi.org/10.1007/s10658-013-0333-1

Filgueiras, C. C., Martins, A. D., Pereira, R. V., & Willett, D. S. (2019). The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences, 20(23), 5851. https://doi.org/10.3390/ijms20235851

Filgueiras, C. C., Willett, D. S., Junior, A. M., Pareja, M., Borai, F. E., Dickson, D. W., ... & Duncan, L. W. (2016). Stimulation of the salicylic acid pathway aboveground recruits entomopathogenic nematodes belowground. PloS One, 11(5), e0154712. https://doi.org/10.1371/journal.pone.0154712

Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., ... & Tong, L. (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences, 102(5), 1773-1778. https://doi.org/10.1073/pnas.0409227102

Gačnik, S., Munda, A., & Petkovšek, M. M. (2019). Effect of salicylic and methyl-salicylic acid on mycelial growth of different fungi and on infection of apple fruits with Monilinia laxa. Zbornik predavanj in referatov, 14. slovensko posvetovanje o varstvu rastlin z mednarodno udeležbo, 5.-6. marec 2019, Maribor, Slovenija, 513-518.

Gačnik, S., Veberič, R., Hudina, M., Koron, D., & Mikulič-Petkovšek, M. (2021). Salicylate treatment affects fruit quality and also alters the composition of metabolites in strawberries. Horticulturae, 7(10), 400. https://doi.org/10.3390/horticulturae7100400

Gacnik, S., Veberič, R., Hudina, M., Marinovic, S., Halbwirth, H., & Mikulič-Petkovšek, M. (2021). Salicylic and methyl salicylic acid affect quality and phenolic profile of apple fruits three weeks before the harvest. Plants, 10(9), 1807. https://doi.org/10.3390/plants10091807

Gačnik, S., Veberič, R., Marinović, S., Halbwirth, H., & Mikulič-Petkovšek, M. (2021). Effect of pre-harvest treatments with salicylic and methyl salicylic acid on the chemical profile and activity of some phenylpropanoid pathway related enzymes in apple leaves. Scientia Horticulturae, 277, 109794. https://doi.org/10.1016/j.scienta.2020.109794

Ghasemzadeh, A., Jaafar, H. Z., & Karimi, E. (2012). Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties. International Journal of Molecular Sciences, 13(11), 14828-14844. https://doi.org/10.3390/ijms131114828

Geervliet, J. B., Posthumus, M. A., Vet, L. E., & Dicke, M. (1997). Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. Journal of Chemical Ecology, 23(12), 2935-2954. https://doi.org/10.1023/A:1022583515142

Giménez, M. J., Serrano, M., Valverde, J. M., Martínez‐Romero, D., Castillo, S., Valero, D., & Guillen, F. (2017). Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. Journal of the Science of Food and Agriculture, 97(4), 1220-1228. https://doi.org/10.1002/jsfa.7853

Groux, R., Hilfiker, O., Gouhier-Darimont, C., Peñaflor, M. F. G. V., Erb, M., & Reymond, P. (2014). Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. Journal of Chemical Ecology, 40(7), 754-759. https://doi.org/10.1007/s10886-014-0470-9

Hajek, A. E., & Eilenberg, J. (2018). Natural enemies: an introduction to biological control. Cambridge University Press. https://doi.org/10.1017/9781107280267

Halim, V. A., Eschen-Lippold, L., Altmann, S., Birschwilks, M., Scheel, D., & Rosahl, S. (2007). Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Molecular Plant-Microbe Interactions, 20(11), 1346-1352. https://doi.org/10.1094/MPMI-20-11-1346

Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005

Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone (pp. 1-14). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0

Huang, R. H., Liu, J. H., Lu, Y. M., & Xia, R. X. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’navel orange (Citrus sinensis (L.) Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47(2), 168-175. https://doi.org/10.1016/j.postharvbio.2007.06.018

Janda, T., Horváth, E., Szalai, G., & Paldi, E. (2007). Role of salicylic acid in the induction of abiotic stress tolerance. In Salicylic acid: A plant hormone (pp. 91-150). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_5

Janda, T., Szalai, G., & Pál, M. (2020). Salicylic acid signalling in plants. International Journal of Molecular Sciences, 21(7), 2655. https://doi.org/10.3390/ijms21072655

Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. https://doi.org/10.1093/jxb/ert085

Joyce, D. C., Wearing, H., Coates, L., & Terry, L. (2001). Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‚Kensington Pride‘ mango fruit. Australian Journal of Experimental Agriculture, 41(6), 805-813. https://doi.org/10.1071/EA99104

Klessig, D. F., Choi, H. W., & Dempsey, D. M. A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions, 31(9), 871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR

Klessig, D. F., & Malamy, J. (1994). The salicylic acid signal in plants. Plant Molecular Biology, 26(5), 1439-1458. https://doi.org/10.1007/BF00016484

Kumar, D. (2014). Salicylic acid signaling in disease resistance. Plant Science, 228, 127-134. https://doi.org/10.1016/j.plantsci.2014.04.014

Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11, 338. https://doi.org/10.3389/fpls.2020.00338

van Lith, R., & Ameer, G. A. (2016). Antioxidant polymers as biomaterial. In Oxidative Stress and Biomaterials (pp. 251-296). Academic Press. https://doi.org/10.1016/B978-0-12-803269-5.00010-3

Liu, P., Xu, Z. S., Pan-Pan, L., Hu, D., Chen, M., Li, L. C., & Ma, Y. Z. (2013). A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. Journal of Experimental Botany, 64(10), 2915-2927. https://doi.org/10.1093/jxb/ert133

Lortzing, V., Oberländer, J., Lortzing, T., Tohge, T., Steppuhn, A., Kunze, R., & Hilker, M. (2019). Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid‐dependent manner. Plant, Cell & Environment, 42(3), 1019-1032. https://doi.org/10.1111/pce.13447

Mallinger, R. E., Hogg, D. B., & Gratton, C. (2011). Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. Journal of Economic Entomology, 104(1), 115-124. https://doi.org/10.1603/EC10253

Martínez-Esplá, A., Serrano, M., Valero, D., Martínez-Romero, D., Castillo, S., & Zapata, P. J. (2017). Enhancement of antioxidant systems and storability of two plum cultivars by preharvest treatments with salicylates. International Journal of Molecular Sciences, 18(9), 1911. https://doi.org/10.3390/ijms18091911

Martínez‐Esplá, A., Zapata, P. J., Valero, D., Martínez‐Romero, D., Díaz‐Mula, H. M., & Serrano, M. (2018). Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage. Journal of the Science of Food and Agriculture, 98(7), 2742-2750. https://doi.org/10.1002/jsfa.8770

Martel, A. B., & Qaderi, M. M. (2016). Does salicylic acid mitigate the adverse effects of temperature and ultraviolet-B radiation on pea (Pisum sativum) plants? Environmental and Experimental Botany, 122, 39-48. https://doi.org/10.1016/j.envexpbot.2015.09.002

Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K. J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272-281. https://doi.org/10.1104/pp.102.018457

Mishra, A., & Choudhuri, M. A. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42(3), 409-415. https://doi.org/10.1023/A:1002469303670

De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., & Tumlinson, J. H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature, 393(6685), 570-573. https://doi.org/10.1038/31219

Nirupama, P., Gol, N. B., & Rao, T. R. (2010). Effect of post harvest treatments on physicochemical characteristics and shelf life of tomato (Lycopersicon esculentum Mill.) fruits during storage. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 470-479.

Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113-116. https://doi.org/10.1126/science.1147113

Paterson, J. R., Baxter, G., Dreyer, J. S., Halket, J. M., Flynn, R., & Lawrence, J. R. (2008). Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid. Journal of Agricultural and Food Chemistry, 56(24), 11648-11652. https://doi.org/10.1021/jf800974z

Pravilnikom o biotičnem varstvu rastlin. Ur. l. RS št. 45/06

Pulga, P. S., Henshel, J. M., Resende, J. T. V. D., Zeist, A. R., Moreira, A. F. P., Gabriel, A., ... & Gonçalves, L. S. A. (2020). Salicylic acid treatments induce resistance to Tuta absoluta and Tetranychus urticae on tomato plants. Horticultura Brasileira, 38, 288-294. https://doi.org/10.1590/s0102-053620200308

Raskin, I. (1992). Salicylate, a new plant hormone. Plant Physiology, 99(3), 799. https://doi.org/10.1104/pp.99.3.799

Schlösser, E. (1999). Učinkovitost in omejitve pri izrabi sistemično aktivirane odpornosti (SAR) proti rastlinskim patogenom. Zb Pred Ref 4 Slov posvetovanje o varstvu Rastl, 3.-4. marec 1999, Portorož, Slov.: 1-6.

Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 6(4), 365-371. https://doi.org/10.1016/S1369-5266(03)00058-X

Shah, J., & Zeier, J. (2013). Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 4, 30. https://doi.org/10.3389/fpls.2013.00030

Shulaev, V., Silverman, P., & Raskin, I. (1997). Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385(6618), 718-721. https://doi.org/10.1038/385718a0

Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. https://doi.org/10.1016/j.jplph.2014.05.012

Stella de Freitas, T. F., Stout, M. J., & Sant‘Ana, J. (2019). Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Management Science, 75(3), 744-752. https://doi.org/10.1002/ps.5174

Stout, M. J., Fidantsef, A. L., Duffey, S. S., & Bostock, R. M. (1999). Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54(3-4), 115-130. https://doi.org/10.1006/pmpp.1998.0193

Strobel, N. E., & Kuc, J. A. (1995). Chemical and biological inducers of systemic resistance to pathogens protect cucumber and tobacco plants from damage caused by paraquat and cupric chloride. Phytopathology (USA). https://doi.org/10.1094/Phyto-85-1306

Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Effect of salicylic acid treatments on storage life of peach fruits cv.‘Flordaking’. Pakistan Journal of Botany, 44(1), 119-124.

Trdan, S., Valič, N., Jerman, J., Ban, D., & Žnidarčič, D. (2004). Efficacy of three natural chemicals to reduce the damage of Erysiphe cichoracearum on chicory in two meteorologically different growing seasons. Journal of Phytopathology, 152(10), 567-574. https://doi.org/10.1111/j.1439-0434.2004.00897.x

Trdan, S., Žnidarčič, D., Vidrih, M., & Kač, M. (2008). Three natural substances for use against Alternaria cichorii on selected varieties of endive: antifungal agents, plant strengtheners, or foliar fertilizers?. Journal of Plant Diseases and Protection, 115(2), 63-68. https://doi.org/10.1007/BF03356240

Trdan, S., Laznik, Ž., & Bohinc, T. (2020). Thirty years of research and professional work in the field of biological control (predators, parasitoids, entomopathogenic and parasitic nematodes) in Slovenia: a review. Applied Sciences, 10(21), 7468. https://doi.org/10.3390/app10217468

Valverde, J. M., Giménez, M. J., Guillen, F., Valero, D., Martinez-Romero, D., & Serrano, M. (2015). Methyl salicylate treatments of sweet cherry trees increase antioxidant systems in fruit at harvest and during storage. Postharvest Biology and Technology, 109, 106-113. https://doi.org/10.1016/j.postharvbio.2015.06.011

van Poecke, R. M., & Dicke, M. (2002). Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. Journal of Experimental Botany, 53(375), 1793-1799. https://doi.org/10.1093/jxb/erf022

Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202

Wang, L., & Li, S. (2008). Role of salicylic acid in postharvest physiology. Fresh Produce, 2(1), 1-5.

Wang, Y. Y., Li, B. Q., Qin, G. Z., Li, L., & Tian, S. P. (2011). Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Scientia Horticulturae, 129(2), 183-188. https://doi.org/10.1016/j.scienta.2011.03.021

Wang, Z., Ma, L., Zhang, X., Xu, L., Cao, J., & Jiang, W. (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae, 181, 113-120. https://doi.org/10.1016/j.scienta.2014.10.055

War, A. R., Paulraj, M. G., Ignacimuthu, S., & Sharma, H. C. (2015). Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. Pest Management Science, 71(1), 72-82. https://doi.org/10.1002/ps.3764

Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565. https://doi.org/10.1038/35107108

Yalpani, N., León, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology, 103(2), 315-321. https://doi.org/10.1104/pp.103.2.315

Yao, H., & Tian, S. (2005). Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 35(3), 253-262. https://doi.org/10.1016/j.postharvbio.2004.09.001

Zanelli, B., Ocvirk, M., Jože Košir, I., Vidrih, M., Bohinc, T., & Trdan, S. (2022). Environmental parameters and fertilisers as factors affecting the salicylic acid and total polyphenol contents in sport turfgrasses. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 72(1), 81-91. https://doi.org/10.1080/09064710.2021.1990390

Zhang, K., Halitschke, R., Yin, C., Liu, C. J., & Gan, S. S. (2013). Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proceedings of the National Academy of Sciences, 110(36), 14807-14812. https://doi.org/10.1073/pnas.1302702110

Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.1016/j.pbi.2019.02.004

Zhang, H., Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng, X. (2008). Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. https://doi.org/10.1016/j.biocontrol.2008.06.012


28. 04. 2023



Review Article

How to Cite

GAČNIK, S., TRDAN, S., & MIKULIČ-PETKOVŠEK, M. (2023). Effects of salicylic acid and its derivatives on plants, harmful and beneficial organisms and their interactions in the environment. Acta Agriculturae Slovenica, 119(1), 1–10. https://doi.org/10.14720/aas.2023.119.1.2953

Similar Articles

1-10 of 730

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>