The growth of plants containing pyrrolizidine alkaloids (PAs) in plots cultivated with medicinal aromatic plants (MAPs) and in their natural wild habitats in Kosovo


  • Fadil MILLAKU Faculty of Natural Sciences and Mathematics, University of Prishtina, Prishtina, Republic of Kosovo
  • Agim RYSHA Faculty of Agribusiness, University of Peja “Haxhi Zeka”, Pejë, Republic of Kosovo
  • Naim BERISHA Faculty of Natural Sciences and Mathematics, University of Prishtina, Prishtina, Republic of Kosovo



plant species, pyrrolizidine alkaloids, medicinal plants, cultivated, wild


Thousands of plant species worldwide produce about 600 different pyrrolizidine alkaloids (PAs), which are known to cause disease in humans and animals. The plants known for their  PAs content were investigated in 70 plots cultivated with 19 MAPs species and the natural habitats of 20 wild MAPs species. Most of the poisonous plants found in cultivated and the natural habitats of wild MAPs belong to the families of Asteraceae and Boraginaceae. In the cultivated MAPs plots, 22 plant species known for their PAs content were identified, including 7 from the Asteraceae, 13 from the Boraginaceae, and 1 species from the Convolvulaceae and Solanaceae families. 34 species known for their PAs content were identified in natural habitats, 17 of which belonged to the Boraginaceae and 15 to the Asteraceae families. Convolvulaceae and Solanaceae families were represented by only one species each. Most species from the Asteraceae family known for their PAs content identified in cultivated fields and natural habitats were from the genera Senecio and Jacobaea, while genera Myosotis, Pulmonaria and Symphytum from Boraginaceae family. In the plots cultivated with MAPs, Convolvulus arvensis L. known for its PAs content and tropane alkaloids (TAs) was the most prevalent.


Abd El-Razik, T., Hendawy, S., Abouziena, H., Amer, H., & Hussein, M. (2019). Winter weeds and its control in the medicinal plants in Egypt: a survey study. Egyptian Pharmaceutical Journal, 18(1), 16.

Adamczak, A., Opala, B., Gryszczyńska, A., & Buchwald, W. (2013). Content of pyrrolizidine alkaloids in the leaves of coltsfoot (Tussilago farfara L.) in Poland. Acta Societatis Botanicorum Poloniae, 82(4), 289–293.

Anonymous (2022). Report on the Status of Organic Farming and Industry in Kosovo. Ekoconnect. Prishtinë.

Anonymous (2020). Guidelines and recommendations to reduce the presence of pyrrolizidine alkaloids in food supplements. Food Supplements Europe. Addendum to the Food Supplements Europe Guidelines on Quality of Botanical Preparations: Recommendations for the Manufacturing of Botanical Preparations, including Extracts as Food Supplements. Brussels, Belgium.

Barina, Z., Somogyi, G., Pifkó, D., & Rakaj, M. (2018). Checklist of vascular plants of Albania. Phytotaxa, 378(1), 1.

Chauvin, P., Dillon, J. C., & Moren, A. (1994). Epidémie d‘intoxication alimentaire à l‘héliotrope, Tadjikistan, novembre 1992-mars 1993 [An outbreak of Heliotrope food poisoning, Tadjikistan, November 1992-March 1993]. Sante (Montrouge, France), 4(4), 263–268.

Cheng, D., Nguyen, V. T., Ndihokubwayo, N., Ge, J., & Mulder, P. P. (2017). Pyrrolizidine alkaloid variation in Senecio vulgaris populations from native and invasive ranges. PeerJ, 5, e3686.

Chmit, M. S., Wahrig, B., & Beuerle, T. (2019). Quantitative and qualitative analysis of pyrrolizidine alkaloids in liqueurs, elixirs, and herbal juices. Fitoterapia, 136, 104172.

Christov, V., & Evstatieva, L. (2003). Alkaloid profile of Bulgarian species from genus Senecio L. Zeitschrift Für Naturforschung C, 58(3–4), 300–302.

Commission Regulation (EU). (2020). Commission Regulation (EU) 2020/2040 of 11 December 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of pyrrolizidine alkaloids in certain foodstuffs. L 420/1-5.

EFSA – European Food Safety Authority. (2011). Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA panel on contaminants in the food chain. EFSA Journal, 9(11), 2406.

El-Shazly, A., Sarg, T., Ateya, A., Abdel Aziz, E., Witte, L., & Wink, M. (1996). Pyrrolizidine alkaloids of Cynoglossum officinale and Cynoglossum amabile (family Boraginaceae). Biochemical Systematics and Ecology, 24(5), 415–421.

EMEA. (2006). Guideline on good agricultural and collection practice (GACP) for starting materials of herbal origin. European Medicines Agency. Evaluation of Medicines for Human Use. Doc. Ref. EMEA/HMPC/246816/2005.

Euro+Med. (2006+). Euro+Med PlantBase – The information resource for Euro-Mediterranean plant diversity. Retrieved March 16, 2023, from

Geburek, I., Rutz, L., Gao, L., Küpper, J. H., These, A., & Schrenk, D. (2021). Metabolic pattern of hepatotoxic pyrrolizidine alkaloids in liver cells. Chemical Research in Toxicology, 34(4), 1101–1113.

German Federal Institute for Risk Assessment. (2013). Pyrrolizidine alkaloids in herbal teas and teas. BfR Opinion No. 018/2013 of 5 July 2013. Retrieved from

Griffin, C. T., Gosetto, F., Danaher, M., Sabatini, S., & Furey, A. (2014). Investigation of targeted pyrrolizidine alkaloids in traditional Chinese medicines and selected herbal teas sourced in Ireland using LC-ESI-MS/MS. Food Additives & Contaminants: Part A, 31(5), 940–961.

Günthardt, B. F., Schönsee, C. D., Hollender, J., Hungerbühler, K., Scheringer, M., & Bucheli, T. D. (2020). „Is there anybody else out there?“ – First insights from a suspect screening for phytotoxins in surface water. CHIMIA, 74(3), 129.

He, X., Xia, Q., Woodling, K., Lin, G., & Fu, P. P. (2017). Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides. Journal of Food and Drug Analysis, 25(4), 984–991.

He, Y., Lian, W., Ding, L., Fan, X., Ma, J., Zhang, Q. Y., Ding, X., & Lin, G. (2020). Lung injury induced by pyrrolizidine alkaloids depends on metabolism by hepatic cytochrome P450s and blood transport of reactive metabolites. Archives of Toxicology, 95(1), 103–116.

Hendriks, H., Bruins, A. P., & Huizing, H. J. (1988). Detection of curassavine and some related pyrrolizidine alkaloids in an Anchusa officinalis strain by means of positive ion and negative ion chemical ionization GC/MS. Biological Mass Spectrometry, 17(2), 129–132.

Hol, W. H. G., Vrieling, K., & Van Veen, J. A. (2003). Nutrients decrease pyrrolizidine alkaloid concentrations in Senecio jacobaea. New Phytologist, 158(1), 175–181.

Jaccard, P. (1912). The distribution of the flora in the Alpine zone. 1. New Phytologist, 11(2), 37–50.

Josifović, M. (Ed.). (1970-1977). Flora of SR of Serbia – Volumes: 1-9. Serbian Academy of Sciences and Arts. Belgrade.

Kempf, M., Reinhard, A., & Beuerle, T. (2009). Pyrrolizidine alkaloids (PAs) in honey and pollen-legal regulation of PA levels in food and animal feed required. Molecular Nutrition & Food Research, 54(1), 158–168.

Kirk, H., Vrieling, K., Van Der Meijden, E., & Klinkhamer, P. G. L. (2010). Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. Journal of Chemical Ecology, 36(4), 378–387.

Klevenhusen, F., These, A., Taenzer, J., Weiß, K., & Pieper, R. (2022). Effects of ensiling conditions on pyrrolizidine alkaloid degradation in silages mixed with two different Senecio spp. Archives of Animal Nutrition, 76(2), 93–111.

Kostova, N., Christov, V., Cholakova, M., Nikolova, E., & Evstatieva, L. (2006). Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio. Journal of the Serbian Chemical Society, 71(12), 1275–1280.

Lebada, R., Schreier, A., Scherz, S., Resch, C., Krenn, L., & Kopp, B. (2000). Quantitative analysis of the pyrrolizidine alkaloids senkirkine and senecionine in Tussilago farfara L. by capillary electrophoresis, Phytochemical Analysis, 11(6), 366–369.<366::AID-PCA538>3.0.CO;2-1

Letsyo, E., Jerz, G., Winterhalter, P., & Beuerle, T. (2017). Toxic pyrrolizidine alkaloids in herbal medicines commonly used in Ghana. Journal of Ethnopharmacology, 202, 154–161.

Ljevnaić-Mašić, B., Brdar-Jokanović, M., Džigurski, D., Nikolić, L., & Meseldžija, M. (2022). Weed composition in conventionally and organically grown medical and aromatic plants. Acta Scientiarum Polonorum Hortorum Cultus, 21(4), 115–125.

Longhurst, P. J., Tompkins, D., Pollard, S. J., Hough, R. L., Chambers, B., Gale, P., Tyrrel, S., Villa, R., Taylor, M., Wu, S., Sakrabani, R., Litterick, A., Snary, E., Leinster, P., & Sweet, N. (2019). Risk assessments for quality-assured, source-segregated composts and anaerobic digestates for a circular bioeconomy in the UK. Environment International, 127, 253–266.

Macel, M. (2010). Attract and deter: a dual role for pyrrolizidine alkaloids in plant-insect interactions. Phytochemistry Reviews, 10(1), 75–82.

Macel, M., Vrieling, K., & Klinkhamer, P. G. (2004). Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry, 65(7), 865–873.

Mandić, B., Godjevac, D., Beskoski, V., Simić, M., Trifunović, S., Tešević, V., Vajs, V., & Milosavljević, S. (2009). Pyrrolizidine alkaloids from seven wild-growing Senecio species in Serbia and Montenegro. Journal of the Serbian Chemical Society, 74(1), 27–34.

Matevski, V. (Ed.). (2010). The Flora of the Republic of Macedonia. 2nd volume. Macedonian Academy of Sciences and Arts. Skopje.

Micevski, K. (Ed.). (1985-2005). Flora of the Republic of Macedonia. Volumes: 1-5. Macedonian Academy of Sciences and Arts. Skopje.

Millaku, F. (Ed.), Rexhepi, F., Krasniqi, E., Pajazitaj, Q., Mala, Xh., & Berisha, N. (2013). The Red Book of Vascular Flora of the Republic of Kosovo. MESP. Prishtina.

Nedelcheva, A., Kostova, N., & Sidjimov, A. (2015). Pyrrolizidine alkaloids in Tussilago farfara from Bulgaria. Biotechnology & Biotechnological Equipment, 29(sup1), S1–S7.

O‘Dowd, D. J., & Edgar, J. A. (2006). Seasonal dynamics in the pyrrolizidine alkaloids of Heliotropium europaeum. Australian Journal of Ecology, 14(1), 95–105.

Oberlies, N. H., Kim, N. C., Brine, D. R., Collins, B. J., Handy, R. W., Sparacino, C. M., Wani, M. C., & Wall, M. E. (2004). Analysis of herbal teas made from the leaves of comfrey (Symphytum officinale): reduction of N-oxides results in order of magnitude increases in the measurable concentration of pyrrolizidine alkaloids. Public Health Nutrition, 7(7), 919–924.

O‘Dowd, D. J., & Edgar, J. A. (2006). Seasonal dynamics in the pyrrolizidine alkaloids of Heliotropium europaeum. Australian Journal of Ecology, 14(1), 95–105.

Paparisto, K., Demiri, M., Mitrushi, I., & Qosja, Xh. (1988). Flora of Albania I. Albanian Academy of Sciences and Arts. The Biological Research Center – Tirana.

Pelser, P. B., de Vos, H., Theuring, C., Beuerle, T., Vrieling, K., & Hartmann, T. (2005). Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry, 66(11), 1285–1295.

Pestchanker, M. J., & Giordano, O. S. (1986). Pyrrolizidine alkaloids from five Senecio species. Journal of Natural Products, 49(4), 722–723.

Pfister, J. A., Molyneux, R. J., & Baker, D. C. (1992, May). Pyrrolizidine alkaloid content of houndstongue (Cynoglossum officinale L.). Journal of Range Management, 45(3), 254.

Qosja, Xh., Paparisto, K., Demiri, M., Vangjeli, J., & Balza, E. (1992). Flora of Albania II. Albanian Academy of Sciences and Arts. The Biological Research Center – Tirana.

Qosja, Xh., Paparisto, K., Vangjeli, J., & Ruci, B. (1996). Flora of Albania III. Albanian Academy of Sciences and Arts. The Biological Research Center – Tirana.

Sarić, M., & Diklić, N. (eds.) (1986). Flora of SR Serbia vol. 10 - Supplement. Serbian Academy of Sciences and Arts. Belgrade.

Schrenk, D. (2020). Toxicology of pyrrolizidine alkaloids. Food and Chemical Toxicology, 135, 110938.

Smith, L. W., & Culvenor, C. C. J. (1981). Plant sources of hepatotoxic pyrrolizidine alkaloids. Journal of Natural Products, 44(2), 129–152.

Smyrska-Wieleba, N., Wojtanowski, K. K., & Mroczek, T. (2017). Comparative HILIC/ESI-QTOF-MS and HPTLC studies of pyrrolizidine alkaloids in flowers of Tussilago farfara and roots of Arnebia euchroma. Phytochemistry Letters, 20, 339–349.

Steinhoff, B. (2019). Pyrrolizidine alkaloid contamination in herbal medicinal products: Limits and occurrence. Food and Chemical Toxicology, 130, 262–266.

Stevanović, V. (ed). (2012). The flora of Serbia 2. Serbian Academy of Sciences and Arts. Belgrade.

Suau, R., Cabezudo, B., Rico, R., López-Romero, J. M., & Nájera, F. (2002). Alkaloids from Fumaria sepium and Fumaria agraria. Biochemical Systematics and Ecology, 30(3), 263–265.

Suparmi, S., Mulder, P. P., & Rietjens, I. M. (2020). Detection of pyrrolizidine alkaloids in jamu available on the Indonesian market and accompanying safety assessment for human consumption. Food and Chemical Toxicology, 138, 111230.

Todd, F. (1995). Tropane alkaloids and toxicity of Convolvulus arvensis. Phytochemistry, 39(2), 301–303.

Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., & Webb, D. A. (eds.) (1993). Flora europaea. vol 1 (2nd edition). Cambridge.

Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., & Webb, D. A. (eds.) (1968-1980). Flora europaea. vol 2-5. Cambridge.

van Dam, N. M., Verpoorte, R., & van der Meijden, E. (1994). Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry, 37(4), 1013–1016.

Vangjeli, J., Ruci, B., Mullaj, A., Paparisto, K., & Qosja, Xh. (2000). Flora of Albania IV. Albanian Academy of Sciences and Arts. The Biological Research Center – Tirana.

Witte, L., Ernst, L., Adam, H., & Hartmann, T. (1992). Chemotypes of two pyrrolizidine alkaloid containing Senecio species. Phytochemistry, 31, 559-565.



29. 03. 2024



Original Scientific Article

How to Cite

MILLAKU, F., RYSHA, A., & BERISHA, N. (2024). The growth of plants containing pyrrolizidine alkaloids (PAs) in plots cultivated with medicinal aromatic plants (MAPs) and in their natural wild habitats in Kosovo. Acta Agriculturae Slovenica, 120(1), 1–10.

Similar Articles

1-10 of 782

You may also start an advanced similarity search for this article.