Use of sugars as alternative to chemical control: trials carried out on thrips associated with olive tree

Authors

  • Ilhem BOUHIDEL Agronomy Department, Laboratory of Improvement of the Phytosanitary Protection Techniques in Mountanious Agrosystems (LATPPAM), University of Batna 1, Algeria
  • Nadia LOMBARKIA Agronomy Department, Laboratory of Improvement of the Phytosanitary Protection Techniques in Mountanious Agrosystems (LATPPAM), University of Batna 1, Algeria
  • Sabah RAZI Department of Agronomic Sciences, Faculty of Sciences, University Mohamed Khieder Biskra, Algeria

DOI:

https://doi.org/10.14720/aas.2023.119.2.2975

Keywords:

thrips, Olea europaea L., sucrose, fructose, glucose, ‘Sigoise’, ‘Chemlal’

Abstract

Foliar spraying of infradoses of sugars (glucose, fructose or sucrose) induces plant resistance to pests that are particularly difficult to combat. These include thrips, which can cause flower abortion, stunting and deformation of olives, resulting in significant crop losses. Randomised block trials were conducted during three years (2017 to 2019), on two cultivars Chemlal and Sigoise, in an olive grove in Batna province (Algeria), with the aim of determining the most effective dose and type of sugar on thrips populations, and to evaluate the effectiveness of combining sugar with chemical treatment, as well as the possibility of reducing the dose of the latter. The results showed that sucrose at a concentration of 100 ppm was the most effective and that the efficacy of sucrose was higher than that of glucose and fructose, on both cultivars tested. The combination of sucrose with insecticide resulted in a synergistic effect and a higher efficacy gain than sucrose alone, and that the efficacy of the combination sucrose + insecticide at low dose D1 was identical to the combination sucrose + insecticide at recommended dose D2. It is therefore possible to reduce the chemical insecticide dose while maintaining good treatment efficacy for the control of these pests.

References

Abdessemed, S., Abdessemed, A., Boudchicha, R.H. & Benbouza, H. (2018). Caractérisation et identification de quelques écotypes d’olivier Olea europaea L en Algérie. Agriculture, 8(2), 26-43.

Allan, S. & Gillett-Kaufman, J.L. (2018). Attraction des thrips (Thysanoptera) aux pièges collants colorés dans une oliveraie de Floride. Entomologiste de Floride, 101, 61–69. https://doi.org/10.1653/024.101.0112

Aluko, O.O., Li, C., Wang Q. & Liu H. (2021). Sucrose utilization for improved crop yields: A review article. International Journal of Molecular Sciences, 22(9), 4704. https://doi.org/10.3390/ijms22094704

Arnault, I., Chovelon, M. & Derridj, S. (2012). Preliminary tests in field conditions of alternatives substances against grape downy mildew in organic farming. Proceedings of the IOBC/WPRS Working Group “Biological Control of Fungal and Bacterial Plant Pathogens”, Reims, France, 24-27 June 2012.

Arnault, I., Bardin, M., Ondet, S., Furet, A., Chovelon, M., Kasprick, A.C., Marchand, P., Clerc, H., Davy, M., Roy, G., Romet, L., Auger, J., Mançois, A. & Derridj, S. (2015). Utilisation de micro-doses de sucres en protection des plantes. Innovations Agronomiques, 46, 1-10.

Arnault, I., Lombarkia, N., Joy-Ondet, S., Romet, L., Brahim, I., Meradi, R., Nasri, A., Auger, J. & Derridj, S. (2016). Foliar application of microdoses of sucrose to reduce codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) damage to apple trees. Pest Management Science, 72(10), 1901-1909. https://doi.org/10.1002/ps.4228

Arnault, I., Zimmermann, M., Furet, A., Chovelon, M., Thibord, J.B., & Derridj, S. (2017). Fructose and sucrose as priming molecules against pathogens and pests? In: Abstract book of IOBC-WPRS general assembly Meeting of the WGs Integrated protection in viticulture, Induced resistance in plants against insects and diseases and Multitrophic interactions in soil. Riva del Garda, Italy, 15-20 October 2017.

Arnault, I., Aveline, N., Bardin, M., Brisset, M.N., Carriere, J., Chovelon, M., Delanoue, G., Furet, A., Frérot, B., Lambion, J., Ondet, S., Marchand, P., Desmoucaux, N., Romet, L., Thibord, J.B. & Trouvelot, S. (2021). Optimisation des stratégies de bio contrôle par la stimulation de l’immunité des plantes avec des applications d’infra-doses de sucres simples, Innovations Agronomiques, 82, 411-423.

Bielza, P.1., Quinto, V., Fernandez, E., Grávalos, C. & Contreras, J. (2007). Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology, 100(3), 916-20. https://doi.org/10.1603/0022-0493(2007)100[916:GOSRIF]2.0.CO;2

Bolouri Moghaddam, M.R. &Van den Ende, W. (2012). Sugars and plant innate immunity. Journal of Experimental Botany, 63(11), 3989-98. https://doi.org/10.1093/jxb/ers129

Bouhidel, I. & Lombarkia, N. (2021). Use of infra-doses of sugars to control Cydia pomonella L. (Lepidoptera: Tortricidae) on apple trees in Algeria. Journal of Entomological Research, 45(4), 622-627. https://doi.org/10.5958/0974-4576.2021.00097.9

Bournier, A. (1983). Les Thrips. Biologie-Importance Agronomique. Inra, Paris (France), 128p

Boussadia, O., Steppe, K., Zgallai, H., Ben El Hadj, S., Braham, M., Lemeur, R. & Van Labeke, M.C. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Scientia Horticulturae, 123(3), 336-342. https://doi.org/10.1016/j.scienta.2009.09.023

Canale, M., Bernardo, U., Milonas, P. & Santos, S. (2019). Pests and diseases of the olive tree. Biological and biotechnical methods for olive pest control. Biological and Biotechnical methods for olive pests control. EIP-AGRI Focus Group, 9p

Choudhary, A., Nirmaljit Kaur, A., & Kaur, H. (2022). Molecular cues of sugar signaling in plants. Physiologia Plantarum, 174(1), 1-20. https://doi.org/10.1111/ppl.13630

DePascali, M., Vergine, M., Negro, C., Greco, D, Vita, F., Sabella, E., De Bellis, L. & Luvisi, A. (2022). Xylella fastidiosa and drought stress in olive trees: A complex relationship mediated by soluble sugars Biology, 11(1), 112; https://doi.org/10.3390/biology11010112

Derridj, S. (2009). L’induction de la résistance à des phyto-agresseurs par des infra dose des sucres : une nouvelle technologie. Journées fruits et légumes. Paris: ITAB, 2009, 9-14.

Derridj, S., Arnault, I., Lombakia, N., Ferre, E., Galy, H., Lambion, J. & Auger, J. (2011). Les sucres solubles utilisés comme inducteurs de résistance de la plante aux bio-agresseurs. Quatrième conférence internationale sur les méthodes alternatives en protection des cultures, Lille - 8, 9, 10 mars 2011, 383-388.

Derridj, S., Elad, Y. & Birch, A.N.E. (2012). Sugar signaling as a new way for vegetable and fruit induced resistance against insects, pathogens and nematodes. Induced resistance in plants against insects and diseases. IOBC-WPRS Bulletin Vol. 83, 127p.

Ferré, E., Galy, H., Moulin, F., Clement, G. & Derridj, S. (2008). Le saccharose inducteur de résistance du pommier contre Cydia pomonella L. 8ème Conf. Int. Agric. Montpellier, France, 1-8

Formela-Luboińska, M., Remlein-Starosta, D., Waskiewicz, A.,Karolewski, Z., Bocianowski, J., Stepien, L., Labudda, M., Jeandet, P. & Morkunas, I. (2020). The role of saccharides in the mechanisms of pathogenicity of Fusarium oxysporum f. sp. lupini in yellow lupine (Lupinus luteus L.). International Journal of Molecular Sciences, 21, 7258. https://doi.org/10.3390/ijms21197258

Funderburk, J.E., Frantz, G. & Mellinger, C. (2016). Biotic resistance limits theinvasiveness of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), in Florida. Insect Science, 23,175–182. https://doi.org/10.1111/1744-7917.12250

Gombač, P. & Trdan, S. (2014). The efficacy of intercropping with birdsfoot trefoil and summer savoury in reducing damage inflicted by onion thrips (Thrips tabaci , Thysanoptera, Thripidae) on four leek cultivars. Journal of Plant Diseases and Protection, 121(3), 117-124. https://doi.org/10.1007/BF03356499

Hadjou, L., Lamani, O. & Cheriet, F. (2013). Labellisation des huiles d’olive Algériennes contraintes et opportunité de processus. New Médiat, 2, 35-46.

Haouari, A. (2013). Influence des modifications de l’équilibre source-puits sur les paramètres physiologiques et biochimiques chez l’olivier (Olea europaea L.), sous bioclimat semi-aride de Tunisie. Thèse de Doctorat, Faculté des sciences en Bio-ingénierie, Université de Gand, Belgique et Faculté des Sciences de Sfax, Tunisie, 186p

Jeandet, P., Formela-Luboińska, M., Mateusz Labudda, M. & Morkunas, L. (2022). The role of sugars in plant Mresponses to stress and their regulatory function during development. International Journal of molecular Sciences, 23(9), 51-61. https://doi.org/10.3390/ijms23095161

Lambion, J. & Mazollier, C. (2016). Protection de la tomate en culture biologique sous abris: du sucre contre Tuta absoluta . Maraichage Bio Info, 89, 1-2.

Li, C., Liu, Y., Tian, J., Zhu, Y. & Fan, J. (2020). Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress. PLoS ONE, 15, e0243835. https://doi.org/10.1371/journal.pone.0243835

Loomans, A.J.M. & Murai, T. (1997). Culturing thrips and parasitoids. In Thrips as Crop Pests; Lewis, T., Ed. CAB International Harpenden: Herts, UK, 477–503.

Loumou, A. & Giourga, C. (2003). Olive groves: “The life and the identity of the Mediterranean”. Agriculture and Human Values, 20, 87-95. https://doi.org/10.1023/A:1022444005336

Mandrin, J.F. & Lichou, J. (2000). Le thrips californien sur pêches : Nouvelle approche pour la protection des vergers. Infos - Ctifl n°161, 4p.

Morkunas, I. & Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36(7), 1607–1619. https://doi.org/10.1007/s11738-014-1559-z

Mound, L.A. (2018). Biodiversity of Thysanoptera. In Insect Biodiversity: Science and Society; Foottit, R.G., Adler, P.H., Eds.; Wiley- Blackwell: Chichester UK, V II, 483–499. https://doi.org/10.1002/9781118945582.ch18

Ouyang, F., Hui, C., Ge. S., Men, X.Y., Zhao, Z.H., Shi, P.J., Zhang, Y.S. & Li, B.L. (2014). Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: A 37-year observation of cotton bollworms. Ecology and Evolution, 4, 3362–3374. https://doi.org/10.1002/ece3.1190

Pappalardo, S., Villa, M., Santos, S., Benhadi-Marín, J., Pereira, J. A. & Venturino, E. A. (2021). Tritrophic interaction model for an olive tree pest, the olive moth – Pray oleae (Bernard). Ecological Modelling, 462, 1097. https://doi.org/10.1016/j.ecolmodel.2021.109776

Phillips, E.F., Allan, S.A., Griffith, T.B. & Gillett-Kaufman, J.L. (2020). Survey of Thysanoptera using colored sticky card traps in Florida olive groves. Florida Entomologist, 103(2), 264-273. https://doi.org/10.1653/024.103.0218

Rolland, F., Baena-Gonzalez, E. & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709. https://doi.org/10.1146/annurev.arplant.57.032905.105441

Ruggero, P. (2021). Climate change and major pests of Mediterranean olive orchards: Are we ready to face the global heating? Insects, 12(9), 802. https://doi.org/10.3390/insects12090802

Smeekens, S., Ma, J., Hanson, J. & Rolland, F. (2010). Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 13, 274-7. https://doi.org/10.1016/j.pbi.2009.12.002

Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. & Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis, Plant Physiology, 140, 637–646. https://doi.org/10.1104/pp.105.072579

Spooner-Hart, R., Tesoriero, L. & Hall, B. (2007). Invertebrate pests, 19–37 In Field Guide to Olive Pests, Diseases and Disorders in Australia. Publication No. 07/153. Rural Industries Research and Development Corporation, Brisbane, Queensland, Australia.

Trdan, S., Andjus, L., Raspudić, E. & Kač, M. (2005). Distribution of Aeolothrips intermedius Bagnall (Thysanoptera: Aeolothripidae) and its potential prey Thysanoptera species on different cultivated host plants. Journal of Pest Science, 78(4), 217–226. https://doi.org/10.1007/s10340-005-0096-3

Valette, E. (2007). Le sucre : un allié insoupçonné dans la lutte insecticide contre le thrips. Projet de recherche, Astia Phyto Anadiag France, 50p

Vono, G., Bonsignore, C.P., Gullo, G. & Marullo, R. (2020). Olive production threatened by a resurgent pest Liothrips oleae (Costa, 1857) (Thysanoptera: Phlaeothripidae) in Southern Italy. Insects, 11, 887. https://doi.org/10.3390/insects11120887

Wu, S., Tang, L., Zhang, X., Xing, Z., Lei, Z. & Gao, Y. (2018). A decade of a thrips invasion in China: lessons learned. Ecotoxicology, 27(7), 1032-1038. https://doi.org/10.1007/s10646-017-1864-6

Xu, Q., Chen, S., Yunjuan, R., Chen, S. & Liesche, J. (2018). Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiology, 176, 930–945. https://doi.org/10.1104/pp.17.01088

Yoon, J., Cho, L.H., Tun, W., Jeon, J.S. & An, G. (2021). Sucrose signaling in higher plants. PlantSscience, 302, 110703. https://doi.org/10.1016/j.plantsci.2020.110703

Downloads

Published

27. 06. 2023

Issue

Section

Original Scientific Article

How to Cite

BOUHIDEL , I., LOMBARKIA, N., & RAZI, S. (2023). Use of sugars as alternative to chemical control: trials carried out on thrips associated with olive tree. Acta Agriculturae Slovenica, 119(2), 1–11. https://doi.org/10.14720/aas.2023.119.2.2975

Similar Articles

1-10 of 52

You may also start an advanced similarity search for this article.