Establishment of an in vitro method for micropropagation of ironwort, (Sideritis raeseri Boiss. & Heldr.)


  • Valbona SOTA Department of Biotechnology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
  • Donald SHUKA Department of Biology, University of Vlora “Ismail Qemali”, Vlora, Albania
  • Shawky BEKHEET Departament of Plant Biotechnology, National Research Center, Cairo, Egypt
  • Efigjeni KONGJIKA Academy of Sciences of Albania, Section of Natural and Technical Sciences, Tirana, Albania



mountain tea, micropropagation, seed germination, nutrient medium, GA3 concentration


Ironwort / Mountain Tea (Sideritis raeseri Boiss & Heldr.) is an endangered (EN) plant species in Albania. This study aimed to develop a rapid clonal propagation protocol using in vitro methodologies. The ironwort seeds were pre-treated with three concentrations of GA3 (250, 500, and 1000 mg l-1). During the inoculation stage, two types of culture media, Murashige & Skoog (MS) and Woody Plant Medium (WPM), were tested, and the effects of both GA3 concentration and culture media used were evaluated. For the subculture stage, three cytokinins (6-benzylaminopurine / BAP, kinetin, zeatin) at four concentrations (0.5; 1.0; 1.5; 2.0 mg l-1), were compared for the RGR index, while for the rooting stage, two different auxins (1-naphthaleneacetic acid / NAA and indole-3-butyric acid / IBA) at four concentrations (0.5; 1.0; 1.5; 2.0 mg l-1) were tested. GA3 at 500 mg l-1 and MS medium resulted as more effective. The highest value of the RGR index during the subculture stage was obtained in the MS nutrient medium supplemented with BAP at 1.5 mg l-1. For rhizogenesis response, IBA was more effective for roots and length number. Based on these results, in vitro methodologies can be a promising tool for the mass production of this endangered plant species and with possible applications for enhancing the production of valuable nutraceuticals.


Aké, A. P., Maust, B., Orozco-Segovia, A., Oropeza, C. (2007). The effect of gibberellic acid on the in vitro germination of coconut zygotic embryos and their conversion into plantlets. In vitro Cellular & Developmental Biology – Plant, 43, 247-253.

Aneva, I., & Zhelev, P. (2018). The ecological and floristic characteristics of populations of Sideritis scardica Griseb. in Olympus Mts., Greece. Ecologia Balkanica, 10(2), 93-99.

Arabaci, O., Öğretmen, N. G., Tan, U., Yaşa, F. (2014). Effect of some seed treatments on germination of Sideritis perfoliata L. Trakya University Journal of Natural Sciences, 15(2), 83-87.

Avato, I. M., Fortunato, I. M., Ruta, C., D’elia, R. (2005). Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Science, 169, 29–36.

Bojadzi, A., Brajanoska, R, Stefkov, Gj., Fotiadis, G., Shumka, S., Avukatov, V. (2012). Conservation Action Plan for Mountain tea in the Prespa Lakes Watershed (Final Report). UNDP/GEF project “Integrated ecosystem management in the Prespa lakes basin” 2012, pp 66.

Cardoso, J. C., Silva, J. A. T. (2013). Micropropagation of Zeyheria montana Mart. (Bignoniaceae), an endangered endemic medicinal species from the Brazilian cerrado biome. In vitro Cellular & Developmental Biology-Plant, 49, 710-716.

Cornea-Cipcigan, M., Pamfil, D., Sisea, C. R., Mărgăoan, R. (2020). Gibberellic acid can improve seed germination and ornamental quality of selected Cyclamen species grown under short and long days. Agronomy, 10, 516.

Danova, K., Evstatieva, L., Todorova, M., Trendafilova, A., Wolfram, E. (2013). Optimization of in vitro culture system for biomass and polyphenolics production in Inula britannica and Sideritis scardica Sofia 2 cultivar. Planta Medica 79 - PN21.

European Medicine Agency (EMA) (2016). Assessment report on Sideritis scardica Griseb.; Sideritis clandestina (Bory & Chaub.) Hayek; Sideritis raeseri Boiss. & Heldr.; Sideritis syriaca L., herba Final Report, 2 February 2016 EMA/HMPC/39455/2015 Committee on Herbal Medicinal Products (HMPC).

Finch-Savage, W. E. and Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501-523.

Gashi B., Abdullai K., Mata V., Kongjika E. (2012). Effect of gibberellic acid and potassium nitrate on seed germination of the resurrection plants Ramonda serbica and Ramonda nathaliae. African Journal of Biotechnology, 11(20), 4537-4542.

Gatti E., Sgarbi E., Ozudogru E. A., Lambardi M. (2017). The effect of PlantformTM bioreactor on micropropagation of Quercus robur in comparison to a conventional in vitro culture system on gelled medium, and assessment of the microenvironment influence on leaf structure. Plant Biosystems, 151, 1129-1136.

Georgiev, M. I., Weber, J., Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied Microbiology and Biotechnology, 83, 809-823.

Hodaj, E., Tsiftsoglou, O., Shuka, L., Abazi, S., Hadjipavlou-Litina, D., Lazari, D. (2017). Antioxidant activity and chemical composition of essential oils of some aromatic and medicinal plants from Albania. Natural Product Communications (NPC), 12(5), 785-790.

Jamwal, K., Bhattacharya, B., Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26-38,

Juan-Vicedo, J., Ramírez-Luna, J. E., Piqueras, A. et al. (2021). Micropropagation and cryopreservation by vitrification of the Spanish endemic medicinal plant Sideritis leucantha Cav. subsp. leucantha (Lamiaceae). In Vitro Cellular & Developmental Biology – Plant, 57, 1057-1065.

Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S., Chaurasia, O. P. (2018). Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricate. Journal of Photochemical and Photobiology B: Biology, 183, 258-265.

Khuat, Q. V., Kalashnikova, E. A., Kirakosyan, R. N., Nguyen, H. T., Baranova, E. N., Khaliluev, M. R. (2022). Improvement of in vitro seed germination and micropropagation of Amomum tsao-ko (Zingiberaceae Lindl.). Horticulturae, 8, 640. 10.3390/horticulturae8070640

Lloyd, G. & McCown, B. (1980). Commercially-feasibible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings - International Plant Propagators' Society (USA), 30, 421-427.

MoE. (2013). For approving of the Red List of wild Flora and Fauna of Albania. Approved by Minister of Environment (MoE), order nr. 1280, dt. 20.11.2013 and published in the official gazette, Nr. 197, dt. 18.12.2013.

Moraes, R. M., Cerdeira, A. L., Lourenço, M. V. (2021). Using micropropagation to develop medicinal plants into crops. Molecules, 26(6), 1752.

Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

Neergheen-Bhujun, V., Awan, A. T., Baran, Y., Bunnefeld, N., Chan, K., Dela Cruz, T. E., et al. (2017). Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. Journal of Global Health, 7(2), 020304.

Nikam, T. D. & Barmukh, R. B. (2009). GA3 enhances in vitro seed germination in Santalum album. Seed Science and Technology, 37(2), 276-280(5).

Papafotiou, M. & Kalantzis, A. (2009). Seed germination and in vitro propagation of Sideritis athoa. Acta Horticulturae, 813, 471-476.

Radić, S., Vujčić, V., Glogoški, M., Radić-Stojković, M. (2016). Influence of pH and plant growth regulators on secondary metabolite production and antioxidant activity of Stevia rebaudiana (Bert). Periodicum Biologorum, 118(1), 9–19.

Ragavendran, C., Kamalanathan, G., Reena, G., Natarajan, D. (2012). In vitro propagation of nodal and shoot tip explants of Passiflora foetida L. An exotic medicinal plant. Pelagia Research Library, 2(6), 707–711.

Romanucci, V., Di Fabio, G., D’Alonzo, D., Guaragna, A., Scapagnini, G., Zarelli, A. (2017). Traditional uses, chemical composition and biological activities of Sideritis raeseri Boiss. & Heldr. Jornal of the Science of Food and Agriculture, 97, 373–383.

Rout, S., Beura, S., Khare, N., Patra, S. S., Nayak, S. (2017). Effect of seed pre-treatment with different concentrations of gibberellic acid (GA3) on seed germination and seedling growth of Cassia fistula L. Journal of Medicinal Plants Studies, 5(6), 135-138.

Sarropoulou, V. & Maloupa, M. (2015). Effect of exogenous dikegulac on in vitro shoot proliferation of Sideritis raeseri L. – Greek mountain tea species. Agriculture & Forestry, 61(4), 153-159.

Sevindik, B., Tütüncü, M., İzgü, T., Tagipur, E. M., Çürük, P., Kaynak, G., Yilmaz, Ö., Mendi, Y. Y. (2019). Micropropogation of Sideritis pisidica Boiss. et Heldr. Apud Bentham. Acta Horticulturae, 1242, 581-586.

Sharma, M., Ahuja, A., Gupta, R., Mallubhotla, S. (2015). Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors. Natural Product Research, 29, 745-749.

Shtereva, L. A., Vassilevska-Ivanova, R. D., Kraptchev, B. V. (2015). In vitro cultures for micropropagation, mass multiplication and preservation of an endangered medicinal plant Sideritis scardica GriseB. Botanica Serbica, 39(2), 111 – 120.

Shuka, L. & Malo, S. (2010). The transboundary important plant areas as conservation units of European green belt (Eastern Albanian zone). Journal of Environmental Protection and Ecology, 11(3), 866–874.

Shuka, L., Shuka, D., Diku, A. (2021). Bimët endemike dhe ato me përhapje të kufizuar, Parku Kombëtar “Prespa”, Gent Grafik, Tiranë, Albania, 150 pp. (in Albanian).

Sota V., Çuko B., Kongjika E. (2020). Micropropagation of Myrtus communis L. and comparison of epidermal glandular trichomes characteristics between in vivo and ex vitro plantlets. Journal of Environmental Protection and Ecology, 21(2), 535–543.

Sota V., Themeli S., Kongjika E., Zekaj Zh. (2019). Exogenous cytokinins application induces changes in stomatal and glandular trichomes parameters in rosemary plants regenerated in vitro. Journal of Microbiology, Biotechnology and Food Sciences, 9(1), 25 – 28.

Tadić V., Bojović D., Arsić I., Dorđević S., Aksentijevic K., Stamenić M., Janković S. (2012). Chemical and antimicrobial evaluation of supercritical and conventional Sideritis scardica Griseb., Lamiaceae extracts. Molecules (Basel, Switzerland), 17(3), 2683 – 2703.

Tomasini, S. & Theilade, I. (2019). Local ecological knowledge indicators for wild plant management: Autonomous local monitoring in Prespa, Albania. Ecological Indicators, 101, 1064–1076.

Tousi, S. E., Radjabian, T., Ebrahimzadeh, H., Niknam, V. (2010). Enhanced production of valerenic acids and valepotriates by in vitro cultures of Valeriana officinalis L. International Journal of Plant Production, 4(3), 1735-6814.

Vantu, S. & Gales, R. C. (2009). Structural characteristics of Chrysanthemum morifolium Ramat (Romica cultivar) regenerated in vitro. Analele Științifice ale Universității ‘Al I Cuza’ din Iași, 10(2), 43-50.

Vélez-Mora, D. V., González, R. A., Zimmermann, M. J. (2015). Enhancement of germination, hyperhydricity control and in vitro shoot formation of Vasconcellea stipulata Badillo. Revista Colombiana de Biotecnologia, 12(2), 16-21.

Yavuz, D. Ö. (2016). Optimization of regeneration conditions and in vitro propagation of Sideritis stricta Boiss & Heldr. International Journal of Biological Macromolecules, 90, 59-62.

Zekaj, Zh., Shuka, L., Malo, S. (2008). Kariological and histological variation to some populations of Sideritis raeseri Boiss. & Heldr., specie in Abania. Proceedings of ICBES. 26-28 September. Tirana, Albania, p. 112-119. (in Albanian).



27. 06. 2023



Original Scientific Article

How to Cite

SOTA, V., SHUKA, D., BEKHEET, S., & KONGJIKA, E. (2023). Establishment of an in vitro method for micropropagation of ironwort, (Sideritis raeseri Boiss. & Heldr.). Acta Agriculturae Slovenica, 119(2), 1–10.

Similar Articles

1-10 of 426

You may also start an advanced similarity search for this article.