Peroxidase activity as a biochemical marker of insecticide use in vegetables

Authors

  • Nassima SENANI Analytical Biochemistry and Biotechnology Laboratory, Mouloud Mammeri University, Tizi-Ouzou, Algeria
  • Samia BEDOUHENE Analytical Biochemistry and Biotechnology Laboratory, Mouloud Mammeri University, Tizi-Ouzou, Algeria
  • Karim HOUALI Analytical Biochemistry and Biotechnology Laboratory, Mouloud Mammeri University, Tizi-Ouzou, Algeria

DOI:

https://doi.org/10.14720/aas.2023.119.2.2657

Keywords:

peroxidase activity, enzymatic browning, insecticides, oxidative stress, crop protection

Abstract

The insecticides use is important for crop improvement and protection, but in excessive amounts, they would induce a dysfunction of metabolic enzymatic systems in plant tissues, leading to undesirable qualitative changes. In this context, we are interested in peroxidase (POD), an important enzyme in plant physiology but whose activity seems to be conditioned by the presence of insecticides in the soil. This work aims to study the impact of locally used insecticides (chlorpyrifos and dimethoate) on the activity of POD in parsley, onion, celery and garlic grown in soils treated or not. POD extraction was performed using Tris-HCl buffer (pH 7.3); its activity was measured using the substrate o-dianisidine in the presence of H2O2. Our result showed that POD activity for insecticide treated parsley, celery and onions increased by 30 % 127 % and 341 % respectively, however did not change significantly for garlic. Thus, the action of these chemicals is not trivial because they may alter non-target pathways, especially when doses are not adjusted accordingly. We found that insecticide stress would increase POD activity in all vegetables except garlic, which showed tolerance to insecticides. Our findings suggest that organic farming conditions could minimize peroxidase activity in parsley, celery and onion. We add that overproduction of POD negatively affects the quality and reduces the shelf life of vegetables, thus would be a very interesting biomarker of insecticide stress.

References

Ahemad, M., & Khan, M.S. (2012). Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. Journal of the Saudi Society of Agricultural Sciences, 11, 63-71. https://doi.org/10.1016/j.jssas.2011.10.001

Al-Asmari, A.K., Athar,M.T., & Kadasah, S.G. (2017). An Updated Phytopharmacological review on medicinal Plant of Arab region: Apium graveolens Linn. Pharmacognosy Reviews, 11, 13-18. https://doi.org/10.4103/phrev.phrev_35_16

Atale, A. S., Narkhede, M. N., & Atale, S. B. (1995). Effects of some agrochemicals on meiotic cell division in chilli. Journal of Maharashtra Agricultural Universities, 20, 195-197.

Aspinall, D., & Paleg, L.G. (1981). Proline accumulation: Physiological aspects, In: Paleg, L.G. and Aspinall, D. (Eds.), The Physiology and Biochemistry of Drought Resistance in Plants (pp. 205-241).Sydney, Academic Press.

Bedouhene, S., Dang, P.M., Hurtado-Nedelec, M., & El-Benna J. (2020). Neutrophil degranulation of Azurophil and specific granules. Methods in Molecular Biology, 2087, 215-222. https://doi.org/10.1007/978-1-0716-0154-9_16

Bett-Garber, K.L, Lamikanra, O., Lester, G.E., Ingram, D.A., & Watson, M.A. (2005). Influence of soil type and storage conditions on sensory qualities of fresh-cut cantaloupe (Cucumis melo). Journal of the Science of Food and Agriculture, 85, 825-830. https://doi.org/10.1002/jsfa.1970

Bradely, P.P., Priebat, D.A., Christensen, R.D., & Rothstein, G. (1982). Measurment of cutaneous inflammation; sestimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology, 78, 206-209. https://doi.org/10.1111/1523-1747.ep12506462

Breda, C., Buffard, D., Van Huystee, R.B., & Esnaul, R. (1993). Differential expression of two peanut peroxidase cDNA clones in peanut plants and cells in suspension culture in response to stress. Plant Cell Reports, 12, 268-272. https://doi.org/10.1007/BF00237133

Choi, M. K., Chae, K.Y., Lee, J.Y., & Kyung, K. H. (2007). Antimicrobial activity of chemical substances derived from S-alk (en) yl-L-cysteine sulfoxide (alliin) in garlic, Allium sativum. Food Science and Biotechnology, 16, 1-7.2092-6456(eISSN).

Çördük, N., Akıncı, N., Kaya, N., Yücel, G., & Akı, C. (2016). Effects of dodine on total protein content and peroxidase activity in ViciafabaL. Sakarya University Journal of Science, 20(3), 627-633. https://doi.org/10.16984/saufenbilder.22241

Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International journal of environmental research and public health, 8(5), 1402-1419. https://doi.org/10.3390/ijerph8051402

Dhiraj, S., Jitesh, K., Paramjeet, K., & Priti, B. (2020). Toxicity, natural and induced degradation of chlorpyrifos. The Journal of the Chilean Chemical Society, 65, 4807-4816. http://dx.doi.org/10.4067/S0717-97072020000204807

Diao, M., Kone, O. H., Ouedraogo, N., Bayili, R. G., Bassole, I. H. N., & Dicko, M. H. (2011). Comparison of peroxidase activities from Allium sativum, Ipomoea batatas, Raphanus sativus and Sorghum bicolor grown in Burkina Faso. African Journal of Biochemistry Research, 5, 124-128. http://www.academicjournals.org/AJBR

Diao, M., Dembele, R.H., Konate, K., & Dicko, M. H. (2019). Etude comparative des peroxydases de dix (10) plantes supérieures couramment rencontrées au Burkina Faso. The International Journal of Biological and Chemical Sciences, 13, 2533-2545. https://doi.org/10.4314/ijbcs.v13i6.9

Dong, K .(2007). Insect sodium channels and insecticide resistance. Invertebrate Neuroscience, 7, 17 https://doi.org/10.1007/s10158-006-0036-9

Fang, W. C. H., & Kao, C. H. H. (2000). Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Science, 158, 71-76. https://doi.org/10.1016/s0168-9452(00)00307-1

FAO. (2021). Scientific review of the impact of climate change on plant pests–A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome. FAO on behalf of the IPPC Secretariat. https://doi.org/10.4060/cb4769en

Fatma, F., Verma, S., Kamal, A., & Srivastava, A. (2018). Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa. Physiology and Molecular Biology of Plants, 24(1), 115-123. https://doi.org/10.1007/s12298-017-0490-3.

Foster, R. E., & Brust, G. E. (1995). Effects of insecticides applied to control cucumber beetles (Coleoptera: Chrysomelidae) on watermelon yields. Crop Protection, 14, 619-624. https://doi.org/10.1016/0261-2194(95)00071-2

García-Hernández, J. L., Troyo-Diéguez, E., Jones, H., Nolasco, H., & Ortega-Rubio, A. (2000). Efectos de la aplicación de insecticidasorganofosforados sobre el rendimiento (y sus parámetros) en ají (CapsicumannuumL. cv. Ancho San Luis). Phyton, 67, 113-120. http://www.redalyc.org/articulo.oa?id=60912502019

Garcia-Hernandez, J. L., Nolasco, H., Troyo-Dieguez, E., Murillo-Amador, B., Flores-Hernandez, A., Orona-Castillo, I., & Valdez-Cepeda, R. D. (2005). The effect of insecticides on peroxidase activityin hot pepper plants (Capsicum annum L.). The Revista Chapingo Serie Horticultura, 11(1), 129-133. http://www.redalyc.org/articulo.oa?id=60912502019

Gaspar, T. C., Penel, C., Thorpe, T., & Greppin, H. (1982). Peroxidases 1970-1980. Asurvey of their biochemical and physiological roles in higher plants. Université de Genève, Centre De Botanique, Genève.

Gaspar, T., Penel, C., Hagage, D., & Greppin, H. (1991). Peroxidases in plant growth, differentiation and development processes, pp. 249-280. In: Biochemical, Molecular, and Physiological Aspects of Plan Peroxidases. Univeristy of Geneve, Geneve, Italy.

Griffiths, G., Trueman, L., Crowther, T., Thomas, B., & Smith, B. (2002). Onions-a global benefith to health. Phytotherapy Research, 16, 603-615. https://doi.org/10.1002/ptr.1222

Gull, A., Lone, A. A., & Wani, N. U. I. (2019).Biotic and abiotic stresses in plants. In: De Oliveira A (ed) Abiotic and biotic stress in plants. Intech Open, London. https://doi.org/10.5772/intechopen.85832

Gupta, P.K. (2016). Chapter 17 - Toxic effects of pesticides (agrochemicals). In Fundamentals of Toxicology. Essential Concepts and Applications (pp. 85-202). Academic Press. https://doi.org/10.1016/B978-0-12-805426-0.00017-2

Hajjar, M. J., Alsaikhan, M. S., & Soliman, A. M. (2018). The potential effect of organophosphorus insecticides on peroxidase enzyme activity in tomato plants (Solanum lycopersicum L.) grown in al-hassa, Saudi Arabia. Bionature, 38, 48-57.

Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Food Science, 55, 184-186. https://doi.org/10.1111/j.1365-2621.1990.tb06048.x

Heshmati, A., Komaki, H. A., Nazemi, F., & Mousavi Khaneghah, A. (2020). Persistence and dissipation behavior of pesticide residues in parsley (Petroselinum crispum) under field conditions. Quality Assurance and Safety of Crops & Foods, 2(3), 55–65. https://doi.org/10.15586/qas.v12i3.755

Kooti, W., Ali-Akbari, S., Asadi-Samani, M., Ghadery, H., & Ashtary- Larky, D. (2014). A review on medicinal plant of Apium graveolens. Advanced Herbal Medicine, 1(1), 48-59.

Lalla, F. D., Ahmed, B., Omar, A., & Mohieddine, M. (2013). Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculates. Journal of Environmental Science Toxicology and Food Technology, 3(1), 30-36. https://doi.org/ 10.9790/2402-0313036.

Li, S., Li, L., Yan, H., Jiang, X., Hu, W., Han, N., & Wang, D. (2019). Antigouty arthritis and antihyperuricemia properties of celery seed extracts in rodent models. Molecular Medicine Reports, 20, 4623-4633. https://doi.org/10.3892/mmr.2019.10708.

Lobarzawsky, J. H., Greppin, H., Penel, C., & Gaspar, T. (1991). Biochemical, Molecular, and Physiological Aspects of Plant Peroxidases. Univeristy of Geneve, Geneve, Italy, 207p.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein Measurement with the phenol reagent. The Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Lubos, E., Loscalzo, J., & Handy, D.E. (2011). Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidant and Redox Signaling, 15(7), 1957-97. https://doi.org/10.1089/ars.2010.3586

Mamduh, Z., Hosseininaveh, V., & Khalil Talebi-Jahromi, A. (2017).Side effects of garlic extract on the life history parameters of the predatory bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Crop Protection, 100, 65-72. https://doi.org/10.1016/j.cropro.2017.05.029

Mebdoua, S., Lazali, M., Ounane, S. M., Tellah, S., Nabi, F., & Ounane, G. (2017). Evaluation of pesticide residues in fruits and vegetables from Algeria. Food Additives & Contaminants: Part B.Surveillance, 10, 91-98. https://doi.org/10.1080/19393210.2016.1278047

Melnikov, Yu. A. (1977). Some applications of the greens function method in mechanics. International Journal of Solids and Structures, 13(11), 1045-1058. https://doi.org/10.1016/0020-7683(77)90075-0

Menzie, Calvin M., & United States. (1969). Bureau of Sport Fisheries and Wildlife. Metabolism of pesticides / by Calvin M. Menzie Bureau of Sport Fisheries and Wildlife Washington, D.C.

Moriwaki, H., Yamada, K., & Nakanishi, H. (2017). Evaluation of the interaction between pesticides and a cell membrane model by surface plasmon resonance spectroscopy analysis. Journal of Agricultural and Food Chemistry, 65(26), 5390-5396. https://doi.org/10.1021/acs.jafc.7b01895.

Mousavizadeh, S. J., & Sedaghathoor, S. (2011). Peroxidase activity in response to applying natural antioxidant of essential oils in some leafy vegetables. Australian Journal of Crop Science, 5, 494-499.

Nazam, N., Lone, M. I., Hamid, A., Qadah, T., Banjar, A., Alam, Q., ……M., Ahmad, W. (2020). Dimethoate Induces DNA Damage and Mitochondrial Dysfunction Triggering Apoptosis in Rat Bone-Marrow and Peripheral Blood Cells. Toxics, 8, 80. https://doi.org/10.3390/toxics8040080

Nwachukwu, I. D.,& Asawalam, E. F. (2014). Evaluation of freshly prepared juice from garlic (Allium sativum L.) as a biopesticide against the maize weevil, Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Journal of Plant Protection Research, 54(2), 132-138. https://doi.org/10.2478/jppr-2014-0021

Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T., & Hameed Siddiqui, Z. (2016). Selective effect of pesticides on plant. A review. Critical Reviews in Food Science and Nutrition, 56(1), 160-179. https://doi.org/10.1080/10408398.2013.787969

Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medcine and Cellular Longevity, 3(1), 2-12. https://doi.org/10.4161/oxim.3.1.10476

Pandit, M.A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., ……Kaur, J. (2022). Major biological control strategies for plant pathogens. Pathogens, 11, 273. https://doi.org/10.3390/pathogens11020273

Ponce, A. G., Delvalle, C. E., & Roura, S. L. (2004). Natural essential oils as reducing agents of peroxidase activity in leafy vegetables. LWT-Food Science and Technology, 37, 199-204. https://doi.org/10.1016/j.lwt.2003.07.005

Shrivastava, P.,& Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001

Singh, S., Gupta, R., & Sharma, S. (2015). Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata. The Journal of Hazardous Materials, 30, 102-110. https://doi.org/10.1016/j.jhazmat.2015.02.053

Tevini, M., & Teramura, A. H. (1989). “UV-B effects on terrestrial plants”. Photochemistry and Photobiology, 50(4), 479-487. http://dx.doi.org/10.1111/j.1751-1097.1989.tb05552.x

Van Huystee, R.B. (1987). Some molecular aspects of plant peroxidase biosynthetic studies. Annual Review of Plant Physiolologie, 38, 205-219. https://doi.org/10.1146/annurev.pp.38.060187.001225

Wang, H., Wu, Y., Liu, X., Du, Z., Qiu, Y., Song, J., ……Li, X. (2019). Resistance and clonal selection among Allium sativum L. germplasm resources to Delia antiqua M. and its correlation with allicin content. Pest Management Science, 75(10), 2830-2839. https://doi.org/ 10.1002/ps.5478

Worthing, C. R., & Walker, S. B. (1983). The pesticide manual. 7th ed. Croydon. The British Crop Protection Council. 695 p.

Yadav, H., Sankhla, M. S., & Kumar, R. (2019). Pesticides-induced carcinogenic and neurotoxic effect on human. Forensic Research & Criminology International Journal, 7, 243-245. https://doi.org/10.15406/frcij.2019.07.00288

Yang, K. J., Lee, J., & Park, H. L. (2020). Organophosphate pesticide exposure and breast cancer risk: A rapid review of human, animal, and cell-based studies. International Journal of Environmental Research and Public Health, 17, 5030. https://doi.org/10.3390/ijerph17145030

Yildiztekin, M., Kaya, C., Tuna, A. L., & Ashraf, M. (2015). Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicu L.) plants sprayed with different pesticides. Pakistan Journal of Botany, 47(2), 717-721. https://doi.org/10.21448/ijsm.450830

Zhai, Q., Narbad, A., & Chen, W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients, 7, 552-571. https://doi.org/10.3390/nu7010552

Downloads

Published

27. 06. 2023

Issue

Section

Original Scientific Article

How to Cite

SENANI, N., BEDOUHENE, S., & HOUALI, K. (2023). Peroxidase activity as a biochemical marker of insecticide use in vegetables. Acta Agriculturae Slovenica, 119(2), 1–9. https://doi.org/10.14720/aas.2023.119.2.2657