Water use efficiency, morpho-physiological and biochemical reactions of some bedding plants to drought stress


  • Shaghayegh BEHESHTI Department of Horticultural Science, Mahabad Branch, Islamic Azad University, Mahabad
  • Mohammad Javad NAZARIDELJOU Department of Horticultural Science, Mahabad Branch, Islamic Azad University, Mahabad
  • Mohammad Ali SALEHI Department of Horticultural Science, Mahabad Branch, Islamic Azad University, Mahabad




bedding plants, deficit irrigation, root to shoot ratio membrane, peroxidation, photosynthetic capacity


The purpose of this experiment is to compare the growth and water consumption efficiency of five garden plants (marigold (Tagetes erecta ‘Red Brocade’), moss-rose (Portulaca grandiflora ‘Sun Rose’), dahlia (Dahlia sp. ‘Double Opra’), gazania (Gazania splendens ‘New Day’), and Indian blanket (Gaillardia pulchella. ‘Sun Dance’)) during the warmer seasons of the year under various levels of drought stress based on field capacity (FC; 25, 50, 75, and 100 %). The interaction effect of plant × drought stress (FC) on the fresh and dry mass of aerial and underground organs was significant. Decreased water availability resulted in a drop in growth parameters (leaf fresh and dry mass and leaf area). In compared to the growth of aerial organs, root biomass increased in response to drought stress. Marigold, Indian blanket, and dahlia plants had the highest root-to-shoot ratio in extreme stress, i.e., FC 25 %. The plant × drought stress interaction significantly influenced flower number, whereas flower diameter was influenced by the main effect of plant and drought stress (not their interaction). The FC 100 % and FC 25 % treatments had the highest and the lowest accumulations of proline and soluble sugars, respectively. Moss-rose, gazania, and marigold ornamental plants had the highest water use efficiency at 75 %, followed by Dahlia at 50 % and moss-rose at 25 %.


Abdallah, M. B., Trupiano, D., Polzella, A., De Zio, E., Sassi, M., Scaloni, A., Zarrouk, M., Youssef, N. B., & Scippa, G.S. (2018). Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of plant physiology, 220, 83–95. https://doi.org/10.1016/j.jplph.2017.10.009

Álvarez, S., & Sánchez-Blanco, M. J. (2015). Comparison of individual and combined effects of salinity and deficit irrigation on physiological, nutritional and ornamental aspects of tolerance in Callistemon laevis plants. Journal of Plant Physiology, 185, 65–74. https://doi.org/10.1016/j.jplph.2015.07.009

Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032.

Asrar, A. W. A., & Elhindi, K. M. (2011). Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences, 18(1), 93-98. https://doi.org/10.1016/j.sjbs.2010.06.007

Bakhshi, B. (2021). Heat and drought stress response and related management strategies in oilseed rape. Agrotechniques in Industrial Crops, 1(4), 170-181.

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060

Bhusal, N., Lee, M., Lee, H., Adhikari, A., Han, A. R., Han, A., & Kim, H. S. (2021). Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Science of the Total Environment, 779, 146466. https://doi.org/10.1016/j.scitotenv.2021.146466

Bijalwan, P., Sharma, M., & Kaushik, P. (2022). Review of the effects of drought stress on plants: A systematic approach. Creative Commons CC BY license. doi:10.20944/preprints202202. 0014. v1

Boyer, J. S. (1996). Advances in drought tolerance in plants. https://doi.org/10.1016/S0065-2113(08)60182-0

Cal, A. J., Sanciangco, M., Rebolledo, M. C., Luquet, D., Torres, R. O., McNally, K. L., & Henry, A. (2019). Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant, Cell & Environment, 42(5), 1532-1544. https://doi.org/10.1111/pce.13514

Cameron, R. W. F., Harrison-Murray, R. S., Atkinson, C. J., & Judd, H. L. (2006). Regulated deficit irrigation–a means to control growth in woody ornamentals. The Journal of Horticultural Science and Biotechnology, 81(3), 435-443. https://doi.org/10.1080/14620316.2006.11512085

Chyliński, W. K., Łukaszewska, A. J., & Kutnik, K. (2007). Drought response of two bedding plants. Acta Physiologiae Plantarum, 29(5), 399-406. https://doi.org/10.1007/s11738-007-0073-y

Cirillo, C., De Micco, V., Rouphael, Y., Balzano, A., Caputo, R., & De Pascale, S. (2017). Morpho-anatomical and physiological traits of two bugainvillea genotypes trained to two shapes under deficit irrigation. Trees, 31, 173–187. https://doi.org/10.1007/s00468-016-1466-6

Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146, 1–12. https://doi.org/10.1016/j.plaphy.2019.11.003

Elansary, H. O., & Salem, M. Z. M. (2015). Morphological and physiological responses and drought resistance enhancement of ornamental shrubs by trinexapac-ethyl application. Scientia Horticulturae, 189, 1–11. https://doi.org/10.1016/j.scienta.2015.03.033

Giordano, M., Petropoulos, S. A., Cirillo, C., & Rouphael, Y. (2021). Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae, 7(5), 107. https://doi.org/10.3390/horticulturae7050107

Grant, O. M. (2012). Understanding and exploiting the impact of drought stress on plant physiology. In Abiotic stress responses in plants (pp. 89-104). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_5

Gzik, A. (1996). Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environmental and Experimental Botany, 36(1), 29-38. https://doi.org/10.1016/0098-8472(95)00046-1

Heidari, Z., Nazarideljou, M. J., Rezaie Danesh, Y., & Khezrinejad, N. (2016). Morphophysiological and biochemical responses of Zinnia elegans to different irrigation regimes in symbiosis with Glomus mosseae. International Journal of Horticultural Science and Technology, 3(1), 19-32. https://doi.org/10.22059/ijhst.2016.58158

Hosseini Boldaji, S. A., Khavari-Nejad, R. A., Hassan Sajedi, R., Fahimi, H., & Saadatmand, S. (2012). Water availability effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa (Medicago sativa L.). Acta Physiologiae Plantarum, 34, 1177-1186. https://doi.org/10.1007/s11738-011-0914-6

Hura, T., Hura, K., & Ostrowska, A. (2022). Drought-stress induced physiological and molecular changes in plants. International Journal of Molecular Sciences, 23(9), 4698. https://doi.org/10.3390/ijms23094698

Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia plantarum, 84(1), 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x

Jin, N., Ren, W., Tao, B., He, L., Ren, Q., Li, S., & Yu, Q. (2018). Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China. Science of the Total Environment, 642, 1-11. https://doi.org/10.1016/j.scitotenv.2018.06.028

Jin, R., Shi, H., Han, Ch., Zhong, B., Wang, Q., & Chan, Zh. (2015). Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration. Scientia Horticulturae, 194(14), 215-221. https://doi.org/10.1016/j.scienta.2015.08.023

Keyghobadi, S., Fotouhi Ghazvini, R., Tajvar, Y., & Sabouri, A. (2020). Morphological and physiological responses to drought stress in eleven genotypes of the juniperus species. Journal of Plant Physiology and Breeding, 10(2), 121-132.

Khalid, M. F., Hussain, S., Ahmad, S., Ejaz, S., Zakir, I., Ali, M. A., Ahmed, N., & Anjum, M. A. (2019). Impacts of Abiotic Stresses on Growth and Development of Plants. In Plant Tolerance to Environmental Stress; CRC Press: Boca Raton, FL, USA, pp. 1–8. https://doi.org/10.1201/9780203705315-1

Korner, C. (2015). Paradigm shift in plant growth control. Current Opinion on Plant Bioogyl, 25, 107–114. https://doi.org/10.1016/j.pbi.2015.05.003

Kumar, S., Sachdeva, S., Bhat, K. V., & Vats, S. (2018). Plant responses to drought stress: physiological, biochemical and molecular basis. In Biotic and abiotic stress tolerance in plants (pp. 1-25). Springer, Singapore. DOI: 10.1007/978-981-10-9029-5_1

Larkunthod, P., Nounjan, N., Siangliw, J. L., Toojinda, T., Sanitchon, J., Jongdee, B., & Theerakulpisut, P. (2018). Physiological responses under drought stress of improved drought-tolerant rice lines and their parents. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 679-687. https://doi.org/10.15835/nbha46211188

Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134

Marschner, H. (Ed.). (2011). Marschner’s mineral nutrition of higher plants. Academic press.

Mohd Amnan, M. A., Mohd Aizat, W., Khaidizar, F. D., & Tan, B. Ch. (2021). Drought stress induces morpho-physiological and proteomechanges of Pandanus amaryllifolius. Critical Review of Biotechnoogyl, 162, 38–47. https://doi.org/10.1101/2021.09.27.461768

Mombeni, M., & Abbasi, A. (2019). Biochemical responses of some common bean (Phaseolus vulgaris L.) genotypes to drought stress. Journal of Agricultural Science and Technology, 21(2), 407-421.

Nalina, M., Saroja, S., Chakravarthi, M., Rajkumar, R., Radhakrishnan, B., & Chandrashekara, K. N. (2021). Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition. Acta Physiologiae Plantarum,

(10). doi:10.1007/s11738-020-03174-1.

Pourasadollahi, A., Siosemardeh, A., Hosseinpanahi, F., & Sohrabi, Y. (2019). Physiological and agromorphological response of potato to drought stress and hormone application. Journal of Plant Physiology and Breeding, 9(1), 47-61.

Qasemipour, E., Tarahomi, F., Pahlow, M., Malek Sadati, S.S., & Abbasi, A. (2020). Assessment of virtual water flows in Iran using a multi-regional input-output analysis. Sustainability, 12(18), 7424. https://doi.org/10.3390/su12187424

Quilambo, O. A. (2004). Proline content, water retention capability and cell membrane integrity as parameters for drought tolerance in two peanut cultivars. South African Journal of Botany, 70(2), 227-234. https://doi.org/10.1016/S0254-6299(15)30239-8

Rafi, Z. N., Kazemi, F., & Tehranifar, A. (2019). Morpho-physiological and biochemical responses of four ornamental herbaceous species to water stress. Acta Physiologiae Plantarum, 41(1), 1-13. https://doi.org/10.1007/s11738-018-2797-2

Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30(1), 105-111. DOI: 10.2135/cropsci1990.0011183X003000010025x

Talbi, S., Rojas, J. A., Sahrawy, M., Rodríguez-Serrano, M., Cárdenas, K. E., Debouba, M., & Sandalio, L. M. (2020). Effect of drought on growth, photosynthesis and total antioxidant capacity of the saharan plant Oudeneya africana. Environmental and Experimental Botany, 176, 104099. https://doi.org/10.1016/j.envexpbot.2020.104099

Tan, K. H. (2009). Environmental soil science. CRC Press. https://doi.org/10.1201/9781439895016

Toscano, S., Franzoni, G., & Álvarez, S. (2023). Drought Stress in Horticultural Plants. Horticulturae, 9(7). https://doi.org/10.3390/horticulturae9010007

Toupchi Khosrowshahi, Z., Salehi-Lisar, S. Y., Ghassemi-Golezani, K., & Motafakkerazad, R (2018). Physiological responses of safflower to exogenous putrescine under water deficit. Journal of Stress Physiology and Biochemistry, 14(3), 38-48.

Valentovic, P., Luxova, M., Kolarovic, L., & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52(4), 184. https://doi.org/10.17221/3364-PSE

Volaire, F. (2003). Seedling survival under drought differs between an annual (Hordeum vulgare) and a perennial grass (Dactylis glomerata). New Phytologist, 160(3), 501-510. DOI: 10.1046/j.1469-8137.2003.00906.x

Yu, S. M., Lo, S. F., & Ho, T.D. (2015). Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20, 844–857. https://doi.org/10.1016/j.tplants.2015.10.009

Zebarjadi, A., Mirany, T., Kahrizi, D., Ghobadi, M., & Nikoseresht, R. (2012). Assessment of drought tolerance in some bread wheat genotypes using drought resistance indices. Biharean Biologist, 6(2), 94-98.




How to Cite

BEHESHTI, S., NAZARIDELJOU, M. J., & SALEHI, M. A. (2023). Water use efficiency, morpho-physiological and biochemical reactions of some bedding plants to drought stress. Acta Agriculturae Slovenica, 119(2), 1–13. https://doi.org/10.14720/aas.2023.119.2.2997



Original Scientific Article