Establishment of agricultural drought monitoring at different spatial scales in southeastern Europe
DOI:
https://doi.org/10.14720/aas.2010.95.3.14768Keywords:
drought monitoring, agriculture, IRRFIB, SPI, numerical modelling, crop water balanceAbstract
To detect temporal and spatial variability of drought is one of the most challenging issues of drought monitoring in the specific country or region due to the fact that there is no standard definition of severity and duration of different types of drought. Crop water deficit (CWD) simulated by crop water balance model IRRFIB supplemented with some in-situ soil water measurements by Time-Domain Reflectometry (TDR) measurement technique are proposed as tools for local agricultural drought monitoring in this study. Moving to regional drought monitoring the main constraint represents data availability of different sources. Available global data sets are of assistance for preparing regional drought monitoring products. In the study two specific products designed for regional scale are described: preliminary maps of the SPI (Standardized Precipitation Index) and products generated by implementation of numerical weather prediction model. It seems to be a lot of potential in both products for a first overview of key meteorological parameters in the region. The development of drought in the year 2009 was under examination and also yearly results for different periods after 1971. Dry periods in the year 2009 heavily impacted cereals in Slovenia. Maize yield showed best agreement with crop water deficit (r = 0.65) and SPI on the time scale of six months for September (r = 0.61). SPI was not suitable for describing agricultural drought in the periods with higher evapotranspiration rate. For more agricultural oriented drought monitoring more indices should be included into the consideration.
Downloads
Published
Issue
Section
License
Copyright (c) 2010 University of Ljubljana, Biotechnical Faculty
This work is licensed under a Creative Commons Attribution 4.0 International License.