Effects of particle size on determination of the contents of grain and legume dietary fibre and resistant starch


  • Blaž FERJANČIČ University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana
  • Mojca KOROŠEC University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana
  • Saša PISKERNIK University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana
  • Jasna BERTONCELJ University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana




dietary fibre, resistant starch, particle size, canned legumes, milling, grains


Dietary fibre comprises non˗digestible carbohydrates, including resistant starch, and lignin, and it is an important constituent of a healthy diet. The aim was to define the influence of particle size on contents determined for dietary fibre and resistant starch in unprocessed grain and canned legumes. Five samples of unprocessed and processed grains were analysed, as oatmeal, buckwheat, dehulled barley, wheat and spelt, and three canned legumes, as beans, chickpeas and peas, with and without their brine. Samples were initially milled unscreened, and then again through 500 μm or 350 μm screens. For unprocessed grain samples, there was generally no influence of particle size, except for the 350-μm milling of dehulled barley, with significantly decreased contents determined for insoluble dietary fibre and resistant starch presumably due to damaging of starch granules and disrupting crystalline formation of starch. For canned legumes with and without their brine, particle size had little effect on contents determined for dietary fibre and resistant starch.


Al-Rabadi, G.J.S., Gilbert, R.G., Gidley, M.J. (2009). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50, 198–204. https://doi.org/10.1016/j.jcs.2009.05.001.

AOAC. (1995). AOAC official method 991.43 total, soluble, and insoluble dietary fibre in foods. Cereal Foods, 7–9.

Brouns, F., Kettlitz, B., Arrigoni, E. (2002). Resistant starch and “the butyrate revolution. Trends in Food Science and Technology, 13, 251–261. https://doi.org/10.1016/S0924-2244(02)00131-0.

Champ, M., Langkilde, A.-M., Brouns, F., Kettlitz, B., Collet, Y.L.B. (2003). Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews, 16, 71. doi: 10.1079/NRR200254.

Ciudad-mulero, M., Fernández-ruiz, V., Matallana-gonzález, M.C., Morales, P. (2019). Dietary fiber sources and human benefits : The case study of cereal and pseudocereals, 1st ed, Functional Food Ingredients from Plants. Elsevier Inc. DOI: 10.1016/bs.afnr.2019.02.002.

Coda, R., Kärki, I., Nordlund, E., Heiniö, R.L., Poutanen, K., Katina, K. (2014). Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food Microbiology, 37, 69–77. doi: 10.1016/j.fm.2013.05.011.

Dahl, W.J. & Stewart, M.L. (2015). Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. Journal of Academy of Nutrition and Dietetics, 115, 1861–1870. https://doi.org/10.1016/j.jand.2015.09.003.

De Almeida Costa, G.E., Da Silva Queiroz-Monici, K., Pissini Machado Reis, S.M., De Oliveira, A.C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94, 327–330. https://doi.org/10.1016/j.foodchem.2004.11.020.

De La Hera, E., Gomez, M., Rosell, C.M. (2013). Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydrate Polymers, 98, 421–427. https://doi.org/10.1016/j.carbpol.2013.06.002.

De Menezes, E.W., Guitini, E. B., Dan M. C. T., Sarda, F.A. H., Lajolo, F. M. (2013). Codex dietary fibre definition - justification for inclusion of carbohydrates from 3 to 9 degree of polymerisation. Food Chemistry, 140(3), 581-585. https://doi.org/10.1016/j.foodchem.2013.02.075

Dhital S., Shrestha A. K., Gidley M. J. (2010a). Effect of cryo-milling on starches: Functionality and digestibility. Food Hydrocolloids, 24(2-3),152-163. https://doi.org/10.1016/j.foodhyd.2009.08.013.

Dhital S., Shrestha A. K., Gidley M. J. (2010b). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82(2), 480-488. https://doi.org/10.1016/j.carbpol.2010.05.018.

Dhital S., Shrestha A. K., Flanagan B. M. Hasjim J., Gidley M. J. (2011). Cryo-milling of starch granules leads to differential effects on molecular size and conformation. Carbohydrate Polymers, 84(3),1133-1140. https://doi.org/10.1016/j.carbpol.2011.01.002.

Dhital S., Warren F. J., Butterworth P.J., Ellis P. R., Gidley M. J. (2017). Mechanisms of starch digestion by α- amylase—Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57(5), 875-892. doi: 10.1080/10408398.2014.922043.

Ebihara, K. & Nakamoto Y. (2001). Effect of the particle size of corn bran on the plasma cholesterol concentration, fecal output and cecal fermentation in rats. Nutrition Research, 21(12), 1509-1518. https://doi.org/10.1016/S0271-5317(01)00380-3.

Ehle, F. R. (1984). Influence of particle size on determination of fibrous feed components. Journal of Daiary Science, 67(7), 1482-1488. https://doi.org/10.3168/jds.S0022-0302(84)81465-4.

Ferjančič B. & Bertoncelj J. (2018). Problematika določanja vsebnosti prehranske vlaknine - vpliv frakcije mletja in načina mešanja vzorca. Acta Agriculturae Slovenica, 111(1), 111-121. doi:10.14720/aas.2018.111.1.11.

Fernstrand, A.M., Bury, D., Garssen, J., Verster, J.C. (2017). Dietary intake of fibers: Differential effects in men and women on perceived general health and immune functioning. Food and Nutrition Research, 61, 1297053. http://dx.doi.org/10.1080/16546628.2017.1297053.

Fuller, S., Beck, E., Salman, H., Tapsell, L. (2016). New horizons for the study of dietary fiber and health: A review. Plant Foods for Human Nutrition, 71, 1–12. doi: 10.1007/s11130-016-0529-6.

Kapoor, M.P., Ishihara, N., Okubo, T. (2016). Soluble dietary fibre partially hydrolysed guar gum markedly impacts on postprandial hyperglycaemia, hyperlipidaemia and incretins metabolic hormones over time in healthy and glucose intolerant subjects. Journal of Functional Foods, 24, 207–220. https://doi.org/10.1016/j.jff.2016.04.008.

Kendall, C.W.C., Esfahani, A., Jenkins, D.J.A. (2010). The link between dietary fibre and human health. Food Hydrocolloids, , 42–48. https://doi.org/10.1016/j.foodhyd.2009.08.002.

Kleintop, A.E., Echeverria, D., Brick, L.A., Thompson, H.J., Brick, M.A. (2013). Adaptation of the AOAC 2011.25 integrated total dietary fiber assay to determine the dietary fiber and oligosaccharide content of dry edible beans. Journal of Agricultural and Food Chemistry, 61, 9719–9726. DOI: 10.1021/jf403018k.

Li E., Dhital S., Hasjim J. (2014). Effects of grain milling on starch structures and flour/starch properties. Starch/Starke, 66, 15-27. https://doi.org/10.1002/star.201200224.

Li, B.W. & Andrews, K.W. (2002). Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. Journal of Food Composition and Analysis, 15, 715–723. https://doi.org/10.1006/jfca.2002.1096.

Macagnan F.T., da Silva L. P., Hecktheuer L.H. (2016). Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, 85, 144-154. https://doi.org/10.1016/j.foodres.2016.04.032.

Mahasukhonthachat, K., Sopade, P.A., Gidley, M.J. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineerin, 96, 18–28. https://doi.org/10.1016/j.jfoodeng.2009.06.051.

Martín-Cabrejas, M.A., Aguilera, Y., Benítez, V., Mollá, E., López-Andréu, F.J., Esteban, R.M. (2006). Effect of industrial dehydration on the soluble carbohydrates and dietary fiber fractions in legumes. Journal of Agricultural and Food Chemistry, 54, 7652–7657. DOI: 10.1021/jf061513d.

McCleary, B. V. & Monaghan, D.A. (2002). Measurement of resistant starch. Journal of AOAC International, 85, 665–675. https://doi.org/10.1093/jaoac/85.3.665

Perry, B. & Wang, Y. (2012). Appetite regulation and weight control: The role of gut hormones. Nutritiona and Diabetes, 2, e26-7. doi:10.1038/nutd.2011.21. DOI: 10.1038/nutd.2011.21.

Rainakari, A.I., Rita, H., Putkonen, T., Pastell, H. (2016). New dietary fibre content results for cereals in the Nordic countries using AOAC 2011.25 method. Journal of Food Composition and Analysis, 51, 1–8. https://doi.org/10.1016/j.jfca.2016.06.001.

Rooney, L.W. & Pflugfelder, R.L. (1986). Factors affecting starch digestibility with special emphasis on sorghum and corn. Journal of Animal Science, 63, 1607–1623. https://doi.org/10.2527/jas1986.6351607x.

Shewry, P.R. & Hey, S. (2015). Do “ ancient ” wheat species differ from modern bread wheat in their contents of bioactive components ? Journal of Cereal Science, 65, 236–243. https://doi.org/10.1016/j.jcs.2015.07.014.

Shin; M., Woo, K., Seib P.A. (2003). Hot - water solubilities and water sorptions of resistant starches at 25 °C. Cereal Chemistry, 80(5), 564-566. https://doi.org/10.1094/CCHEM.2003.80.5.564.

Singh, J., Dartois, A., Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science and Technology, 21, 168–180. https://doi.org/10.1016/j.tifs.2009.12.001.

Škrabanja, V., Kreft, I., Golob, T., Modic, M., Ikeda, S., Ikeda, K., Kreft, S., Bonafaccia, G., Knapp, M., Košmelj, K., (2004). Nutrient content in buckwheat milling fractions. Cereal Chemistry, 81, 172–176. https://doi.org/10.1094/CCHEM.2004.81.2.172.

Stewart, M. L. & Slavin, J. L. (2009). Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro. British Journal of Nutrition, .(10), 1404-1407. DOI: 10.1017/S0007114509990663

Tarcea, M., Rus, V., Zita, F. (2017). Insight of dietary fibers consumption and obesity prevention. Journal of Obesity and Eating Disorers, 3, 2–4. DOI: 10.21767/2471-8203.100033.

Thebaudin, J.Y., Lefebvre, A.C., Harrington, M., Bourgeois, C.M. (1997). Dietary fibres: Nutritional and technological interest. Trends in Food Science and Technology, 8, 41–48. https://doi.org/10.1016/S0924-2244(97)01007-8.

Wang, N., Hatcher, D.W., Gawalko, E.J. (2008). Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chemistry, 111, 132–138. https://doi.org/10.1016/j.foodchem.2008.03.047.

Westenbrink, S., Brunt, K., van der Kamp, J.-W. (2013). Dietary fibre: Challenges in production and use of food composition data. Food Chemistry, 140, 562–567. https://doi.org/10.1016/j.foodchem.2012.09.029.

Yalçin, E., Çelik, S., Akar, T., Sayim, I., Köksel, H. (2006). Effects of genotype and environment on β-glucan and dietary fiber contents of hull-less barleys grown in Turkey. Food Chemistry, 101, 171–176. https://doi.org/10.1016/j.foodchem.2006.01.010.

Zhang, B., Dhital, S., Gidley, M.J. (2015). Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science and Technology, 43, 18–31. https://doi.org/10.1016/j.tifs.2015.01.004.

Zielinski, G., Rozema, B. (2013). Review of fiber methods and applicability to fortified foods and supplements: Choosing the correct method and interpreting results. Analytical and Bioanalytical Chemistry, 405, 4359–4372. https://doi.org/10.1007/s00216-013-6711-x.



13. 12. 2023



Original Scientific Article

How to Cite

FERJANČIČ, B., KOROŠEC, M., PISKERNIK, S., & BERTONCELJ, J. (2023). Effects of particle size on determination of the contents of grain and legume dietary fibre and resistant starch. Acta Agriculturae Slovenica, 119(4), 1–9. https://doi.org/10.14720/aas.2023.119.4.15383

Funding data

Similar Articles

1-10 of 230

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)