Climate projections of air temperature and precipitation for the Ledava, Pesnica and Vipava basins in the 21st century
DOI:
https://doi.org/10.14720/aas.2024.120.2.15456Keywords:
project ‚CeVoTak‘, climate projections, Ledava, Pesnica, air temperature, precipitationAbstract
As part of the project ‚CeVoTak‘, Integrated Management of Small Water Retention and Soil Erosion Prevention Measures in Agricultural Catchments, we studied changing temperature and precipitation conditions up to the year 2100. The study was conducted on agricultural lands in the catchments of the Ledava and Pesnica rivers in the sub-Pannonian region and the Vipava river in the sub-Mediterranean region. A common climate database was used to create the climate projections - RCM (Regional Climate Model) simulations from the project EURO-CORDEX and scenarios RCP (Representative Concentration Pathway), RCP2.6, 4.5 and 8.5. The projections were prepared for three time periods 2011-2040; 2041-2070 and 2071-2100 for 6 different regional climate models for average, minimum and maximum air temperatures and precipitation. Analysis of the ensemble of model simulations for all scenarios shows similar results for the basin of all rivers, an increase in temperature (maximum in winter, minimum in spring), with high confidence for all scenarios and periods. Projections of precipitation are less reliable, but show an increase in annual precipitation due to the winter increase. The use of climate change projections with expert interpretation is essential for determining the vulnerability of individual areas and building resilience through the implementation of climate change adaptation.
References
ARSO. (2021). Podnebne spremembe 2021, fizikalne osnove in stanje v Sloveniji. Poročilo IPCC 2021, povzetek za odločevalce z dodanim opisom stanja v Sloveniji. Urad za meteorologijo, hidrologijo in oceanografijo. Pridobljeno s https://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/2021_11-Poro%C4%8Dilo%20IPPC%20Podnebje%202021.pdf
ARSO. (2023). Arhiv hidroloških podatkov. Pridobljeno s https://vode.arso.gov.si/hidarhiv/index.php
Berkley Earth. (2023). Global warming. Pridobljeno s https://berkeleyearth.org
Bertalanič, R., Dolinar, M., Draksler, A., Honzak, L., Kobold, M., Kozjek, K., … Žust, A. (2018). Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja, Sintezno poročilo – 1. del, ARSO. Pridobljeno s https://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/OPS21_Porocilo.pdf
Boyko, O., Reggiani, P., Todini, E. (2022). Post-processing climate projections of precipitation for the Po river basin: will Italy’s North become water-constrained? Hydrology Research, 53(11), 1414. https://doi.org/10.2166/nh.2022.063
Cvejić, R., Černič-Istenič, M., Honzak, L., Pečan, U., Železnikar, Š., Pintar, M. (2020). Farmers try to improve their irrigation practices by using daily irrigation recommendations—The Vipava Valley Case, Slovenia. Agronomy, 10, 1238. https://doi.org/10.3390/agronomy10091238
Davy, R., Esau, I., Chernokulsky, A., Outten, S., Zilitinkevich, S. (2016). Diurnal asymmetry to the observed global warming. International Journal of Climatology, 37(1), 79-93. https://doi.org/10.1002/joc.4688
Doan, Q., Chen, F., Asano, Y., Gu, Y., Nishi, A., Kusaka, H., Niyogi, D. (2022). Causes for asymmetric warming of sub‐diurnal temperature responding to global warming. Geophysical Research Letters, 49, 20. e2022GL100029, https://doi.org/10.1029/2022GL100029
Dolinar, M., Gregorič, G., Honzak, L., Sušnik, A., Vlahović, Ž., Žust, A. (2018). Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja: Povzetek dejavnikov okolja z vplivom na kmetijstvo in gozdarstvo. ARSO. Pridobljeno s https://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/povzetek-podnebnih-sprememb-agro.pdf
Filmon, G.G. (2022). The impact of climate induced change in flood characteristics on flood damage. Magistrsko delo. Ljubljana, FGG-Fakulteta za gradbeništvo in geodezijo: 56 str. Pridobljeno s https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=140360
Hillier, J.K., Matthews, T., Wilby, R.L., Murphy, C. (2020). Multi-hazard dependencies can increase or decrease risk. Nature Climate Change, 10, 595–598. https://doi.org/10.1038/s41558-020-0832-y
Honzak, L., in Pogačar, T. (2022). Climate scenarios for integrated modelling. Deliverable D3.1 EU Horizon 2020 OPTAIN Project, Grant agreement No. 862756. Pridobljeno s https://www.optain.eu/deliverables#scientific
IEA. (2022). Climate Resilience Policy Indicator, IEA, Paris. Dostopno na https://www.iea.org/reports/climate-resilience-policy-indicator, Licence: CC BY 4.0
ICPDR – International Commission for the Protection of the Danube River. (2019). Climate Change Adaptation Strategy. ICPDR River basin Management Expert Group and Ludwig-Maximilians-University Munich, Department of Geography. Mauser, W., Stolz, R., Weber, M. (Eds.). Pridobljeno s www.icpdr.org
IPCC. (2023). Summary for Policymakers. V: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Lee, H., Romero J. (Eds.). IPCC, Geneva, Switzerland. Pridobljeno s https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, … Rama, B. (Eds.). Cambridge University Press, Cambridge, UK in New York, NY, USA, 3056 pp. doi:10.1017/9781009325844
IPCC. (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Masson-Delmotte, V., Zhai, P., Pörtner, D. et al. (Eds.). Cambridge University Press, Cambridge, UK and New York, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001
Jacob, D., Petersen, J., Eggert, B., Alias, A., Bøssing Christensen, O., Bouwer, L.M., … Yiou, P. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14, 2. http://dx.doi.org/10.1007/s10113-013-0499-2
Lawrence, J., Blackett, P., Cradock-Henry, N.A. (2020). Cascading climate change impacts and implications. Climate Risk Management, 29, 100234. https://doi.org/10.1016/j.crm.2020.100234
Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., … Konar, M. (2022). Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reiews Earth & Environment, 3, 872–889. https://doi.org/10.1038/s43017-022-00368-8
Miró, J.J., Estrela, M.J., Olcina-Cantos, J., Martin-Vide, J. (2021). Future projection of precipitation changes in the Júcar and Segura river basins (Iberian Peninsula) by CMIP5 GCMs local downscaling. Atmosphere, 12, 879. https://doi.org/10.3390/atmos12070879
Olefs, M., Formayer, H., Gobiet, A., Marke, T., Schöner, W., Revesz, M. (2021). Past and future changes of the Austrian climate – Importance for tourism. Journal of Outdoor Recreation and Tourism, 34, 100395. https://doi.org/10.1016/j.jort.2021.100395
Pinke, Z., in Lövei, G.L. (2017). Increasing temperature cuts back crop yields in Hungary over the last 90 years. Global Change Biology, 23, 5426–5435. https://doi.org/10.1111/gcb.13808
Probst, E., in Mauser, W. (2023). Climate change impacts on water resources in the Danube river basin: A hydrological modelling study using EURO-CORDEX climate scenarios. Water, 15, 8. https://doi.org/10.3390/w15010008
Ribeiro, A.F.S., Rusco, A., Gouveia, C.M., Pascoa, P., Zscheischler, J. (2020). Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences, 17, 4815–4830. https://doi.org/10.5194/bg-17-4815-2020
Simpson, N.P., Mach, K.J., Constable, A., Hess, J., Hogarth, R., Howden, M., … Trisos, C.H. (2021). A framework for complex climate change risk assessment. One Earth, 4(4), 489-501. https://doi.org/10.1016/j.oneear.2021.03.005
Sperna Weiland, F.C., Visser, R.D., Greve, P., Bisselink, B., Brunner, L., Weerts, A.H. (2021). Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections. Frontiers in Water, 3, 713537. https://doi.org/10.3389/frwa.2021.713537
Straffelini, E., in Tarolli, P. (2023). Climate change-induced aridity is affecting agriculture in Northeast Italy. Agricultural Systems, 208, 103647. https://doi.org/10.1016/j.agsy.2023.103647
van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., … Rose, S.K. (2011). The representative concentration pathways: an overview. Climate Change, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z
Vertačnik, G., Bertalanič, R., Draksler, A., Dolinar, M., Vlahović, Ž., Frantar, P. (2018). Podnebna spremenljivost Slovenije v obdobju 1961–2011: Povzetek. Ministrstvo za okolje in prostor, Agencija Republike Slovenije za okolje, Ljubljana, 22 str. Pridobljeno s http://meteo.arso.gov.si/met/sl/climate/change/
Zlatanović, N. 2022. Climate Change Study Hydrological Assessment Report. Interreg, Danube Transnational Programme DTP3-308-2.3- lifelineMDD. Pridobljeno s https://www.interreg-danube.eu/uploads/media/approved_project_output/0001/52/2d546e7ce0e9b25bd98398b180843ebfbb0e8ace.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Zalika ČREPINŠEK, Zala ŽNIDARŠIČ, Luka HONZAK, Tjaša POGAČAR
This work is licensed under a Creative Commons Attribution 4.0 International License.