Evaluation of the distribution of cadmium and its toxic effects on the biological responses of Nicotiana tabacum L.

Authors

  • Parvaneh Mahmoudi
  • Elham Mohajel Kazemi Nuclear Agriculture School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Karaj, Iran
  • Hanieh Mohajel Shoja
  • Maryam Kolahi Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

DOI:

https://doi.org/10.14720/aas.2024.120.4.15742

Keywords:

Antioxidant enzymes, Cadmium chloride, Oxidative stress, tobacco

Abstract

The tobacco plant (Nicotiana tabacum L.) is introduced as a template in botanical research. The environmental pollutant cadmium (Cd) contributes to cell destruction by elevated reactive oxygen species (ROS). In this study, to clarify the response of tobacco plants to Cd-induced oxidative stress, the effects of cadmium chloride (CdCl2) at five levels (0, 1, 1.5, 2, and 2.5 mM) were researched on morphological and biochemical characteristics. The finding revealed that the increased concentration of CdCl2 reduced the values ​​of PLSTI (plantlet length stress tolerance index), PDSTI (plantlet dry weight stress tolerance index), and relative water content. CdCl2 significantly increased proline, antioxidant capacity, MDA (Malondialdehyde), and H2O2 levels. As the concentration of cadmium in the environment elevates, its accumulation in roots and shoots increases. However, the amount of Cd accumulated in the roots was greater than in the shoots. The high potential of tobacco to absorb heavy metals introduces this plant as a suitable Cd accumulator, while, due to the non-edible consumption of tobacco, it can also be used in phytoremediation. This study helps to better understand the interaction of different antioxidant pathways with Cd toxicity as well as the biochemical changes resulting from oxidative stress pathways in tobacco plants.

References

Ahmad, I., Naeem, M., & Khan, N. A. (2009). Effects of cadmium stress upon activities of antioxidative enzymes, photosynthetic rate, and production of phytochelatins in leaves and chloroplasts of wheat cultivars differing in yield potential. Photosynthetica, 47(1), 146-151.‏ https://doi.org/10.1007/s11099-009-0024-5.

Akhter, F. (2012). Cd accumulation and distribution in lettuce and barley. PhD, The University of Western Ontario, Canada.

Amin, H., Arain, B. A., Amin, F., & Surhio, M. A. (2014). Analysis of growth response and tolerance index of Glycine max (L.) Merr. under hexavalent chromium stress. Advancements in Life Sciences, 1(4), 231-241.

Antosiewicz, D. M., & Hennig, J. (2004). Overexpression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environmental Pollution, 129(2), 237-245. https://doi.org/10.1016/j.envpol.2003.10.025.

Asgher, M., Khan, M. I. R., Anjum, N. A., & Khan, N. A. (2015). Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma, 252, 399-413. https://doi.org/10.1007/s00709-014-0710-4.

Azizollahi, Z., Ghaderian, S. M., & Ghotbi-Ravandi, A. A. (2019). Cadmium accumulation and its effects on physiological and biochemical characters of summer savory (Satureja hortensis L.). International Journal of Phytoremediation, 21(12), 1241-1253.‏ https://doi.org/10.1080/15226514.2019.1619163.

Barceló, J., Vazquez, M. D., & Poschenrieder, C. H. (1988). Cadmium‐induced structural and ultrastructural changes in the vascular system of bush bean stems. Botanica Acta, 101(3), 254-261.

https://doi.org/10.1111/j.1438-8677.1988.tb00041.x.

Barceló, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13(1), 1-37. https://doi.org/10.1080/01904169009364057.

Barreto, G. E., Iarkov, A., & Moran, V. E. (2015). Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00340.

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060.

Bhaduri, A. M., & Fulekar, M. H. (2012). Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio/Technology, 11(1), 55-69.‏ https://doi.org/10.1007/s11157-011-9251-x.

Burzyński, M., & Żurek, A. (2007). Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica, 45(2), 239-244. https://doi.org/10.1007/s11099-007-0038-9.

Chen, Y. X., He, Y. F., Yang, Y., Yu, Y. L., Zheng, S. J., Tian, G. M., et al. (2003). Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere, 50(6), 781-787. https://doi.org/10.1016/S0045-6535(02)00219-9.

Chen, Q., Lu, X., Guo, X., Pan, Y., Yu, B., Tang, Z., et al. (2018). Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicology and Environmental Safety, 157, 266–275. https://doi.org/10.1016/j.ecoenv.2018.03.055.

Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707-1719.‏ https://doi.org/10.1016/j.biochi.2006.07.003.

Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., et al. (2010). Cadmium stress: an oxidative challenge. Biometals, 23(5), 927-940.‏ https://doi.org/10.1007/s10534-010-9329-x.

Dániel, P., Kovács, B., Prokisch, J., & Gyõri, Z. (1997). Heavy metal dispersion detected in soils and plants alongside roads in Hungary. Chemical Speciation & Bioavailability, 9(3), 83-93. https://doi.org/10.1080/09542299.1997.11083292.

Ehlert, C., Maurel, C., Tardieu, F., & Simonneau, T. (2009). Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiology, 150(2), 1093-1104. https://doi.org/10.1104/pp.108.131458.

Eid, E. M., & Shaltout, K. H. (2016). Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. International Journal of Phytoremediation, 18(11), 1075-1085. https://doi.org/10.1080/15226514.2016.1183578.

Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015. https://doi.org/10.1155/2015/756120.

Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., et al. (2016). Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61-68. https://doi.org/10.1016/j.sajb.2015.11.006.

Fernández, R., Bertrand, A., Reis, R., Mourato, M. P., Martins, L. L., & González, A. (2013). Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. Journal of Hazardous Materials, 244, 555-562. https://doi.org/10.1016/j.jhazmat.2012.10.044.

Gall, H. L., Philippe, F., Domon, J. M., Gillet, F., & Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4(1), 112-166.‏ https://doi.org/10.3390/plants4010112.

Garnier, L., Simon-Plas, F., Thuleau, P., Agnel, J. P., Blein, J. P., Ranjeva, R., et al. (2006). Cd affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant, Cell & Environment, 29(10), 1956–1969. https://doi.org/10.1111/j.1365-3040.2006.01571.x.

Hajiboland, R., Aliasgharzadeh, N., Laiegh, S. F., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331, 313-327.‏ https://doi.org/10.1007/s11104-009-0255-z.

Ibrahim, M. H., Chee Kong, Y., & Mohd Zain, N. A. (2017). Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules, 22(10),1623.‏ https://doi.org/10.3390/molecules22101623.

Imtiaz, M., Tu, S., Xie, Z., Han, D., Ashraf, M., & Rizwan, M. S. (2015). Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant and Soil, 390(1), 17-27. https://doi.org/10.1007/s11104-014-2341-0.

Karcz, W., & Kurtyka, R. (2007). Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biologia Plantarum, 51, 713-719. https://doi.org/10.1007/s10535-007-0147-0.

Khan, M. D., Mei, L., Ali, B., Chen, Y., Cheng, X., Zhu, S. J. (2013). Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings. BioMed Research International, 2013.‏ https://doi.org/10.1155/2013/374063.

Kolahi, M., Kazemi, E. M., Yazdi, M., & Goldson-Barnaby, A. (2020). Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiology and Biochemistry, 146, 71-89. https://doi.org/10.1016/j.plaphy.2019.10.032.

Li, S., Yu, J., Zhu, M., Zhao, F., & Luan, S. (2012). Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant, Cell & Environment, 35(11), 1998-2013.‏ https://doi.org/10.1111/j.1365-3040.2012.02532.x.

Li, Q., Wang, G., Wang, Y., Yang, D., Guan, C., Ji, J. (2019). Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicology and Environmental Safety, 172, 317-325. https://doi.org/10.1016/j.ecoenv.2019.01.078.

Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62, 21–37. https://doi.org/10.1093/jxb/erq281.

Manquián-Cerda, K., Escudey, M., Zúñiga, G., Arancibia-Miranda, N., Molina, M. & Cruces, E. (2016). Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicology and Environmental Safety, 133, 316-326.‏ https://doi.org/10.1016/j.ecoenv.2016.07.029.

Manquián-Cerda, K., Cruces, E., Escudey, M., Zúñiga, G., & Calderón, R. (2018). Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicology and Environmental Safety, 150, 320-326.‏ https://doi.org/10.1016/j.ecoenv.2017.12.050.

Miliauskas, G., Venskutonis, P. R., &Van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007.

Mohajel Kazemi, E., Kolahi, M., Yazdi, M., & Goldson-Barnaby, A. (2020). Anatomic features, tolerance index, secondary metabolites and protein content of chickpea (Cicer arietinum) seedlings under Cd induction and identification of PCS and FC genes. Physiology and Molecular Biology of Plants, 26(8), 1551-1568.‏ https://doi.org/10.1007/s12298-020-00804-3.

Monteiro, C., Santos, C., Pinho, S., Oliveira, H., Pedrosa, T., & Dias, M. C. (2012). Cadmium-induced cyto-and genotoxicity are organ-dependent in lettuce. Chemical Research in Toxicology, 25(7), 1423-1434. https://doi.org/10.1021/tx300039t.

Müller, L., Fröhlich, K., & Böhm, V. (2011). Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129(1), 139-148.‏ https://doi.org/10.1016/j.foodchem.2011.04.045.

Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 48, 1-7. .‏ https://doi.org/10.1186/s40659-015-0001-3.

Nazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., & Khan, N. A. (2012). Cadmium toxicity in plants and role of mineral nutrients in its alleviation.‏ American Journal of Plant Sciences, 3(10), 1476-1489. https://doi.org/10.4236/ajps.2012.310178.

Niu, Z. X., Sun, L. N., Sun, T. H., Li, Y. S., & Hong, W. A. N. G. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Sciences, 19(8), 961-967. https://doi.org/10.1016/S1001-0742(07)60158-2.

Pal, D., & Maiti, S. K. (2019). Abatement of cadmium (Cd) contamination in sediment using tea waste biochar through meso-microcosm study. Journal of Cleaner Production, 212, 986-996. https://doi.org/10.1016/j.jclepro.2018.12.087.

Panitlertumpai, N., Nakbanpote, W., Sangdee, A., Thumanu, K., Nakai, I., & Hokura, A. (2013). Zinc and/or cadmium accumulation in Gynura pseudochina (L.) DC. studied in vitro and the effect on crude protein. Journal of Molecular Structure, 1036, 279-291. https://doi.org/10.1016/j.molstruc.2012.11.062.

Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic Toxicology, 94(1), 56-61. https://doi.org/10.1016/j.aquatox.2009.05.014.

Ramachandran, V., & D’Souza, T. J. (2002). Plant uptake of cadmium, zinc, and manganese from four contrasting soils amended with Cd-enriched sewage sludge. Journal of Environmental Science and Health, Part A, 37(7), 1337-1346.‏ https://doi.org/10.1081/ESE-120005990.

Rejeb, K. B., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278-284.‏ https://doi.org/10.1016/j.plaphy.2014.04.007.

Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x.

Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., et al. (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23(18), 17859-17879. https://doi.org/10.1007/s11356-016-6436-4.

Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1-44. https://doi.org/10.1007/978-3-319-06746-9_1.

Shan, C. (2022). Mechanism of zinc alleviating Cd toxicity in mangrove plant (Kandelia obovata). Frontiers in Plant Science, 13, 1035836. https://doi.org/10.21203/rs.3.rs-1600833/v1.

Sharififar, F., Dehghn-Nudeh, G., & Mirtajaldini, M. (2009). Major flavonoids with antioxidant activity from Teucrium polium L.. Food Chemistry, 112(4), 885-888.‏ https://doi.org/10.1016/j.foodchem.2008.06.064.

Shiyu, Q. I. N., Hongen, L. I. U., Zhaojun, N. I. E., Rengel, Z., Wei, G. A. O., Chang, L. I., et al. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 30(2), 168–180. https://doi.org/10.1016/S1002-0160(20)60002-9.

Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143. https://doi.org/10.3389/fpls.2015.01143.

Suzuki, N. (2005). Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnology, 22(1), 19-25.‏ https://doi.org/10.5511/plantbiotechnology.22.19.

Takahashi, R., Ishimaru, Y., Nakanishi, H., & Nishizawa, N. K. (2011). Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling & Behavior, 6(11), 1813-1816. https://doi.org/10.4161/psb.6.11.17587.

Tran, T. A, & Popova, L. P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turkish Journal of Botany, 37(1), 1-13. https://doi.org/10.3906/bot-1112-16

Weathers, P. J., Towler, M. J., & Xu, J. (2010). Bench to batch: advances in plant cell culture for producing useful products. Applied Microbiology and Biotechnology, 85(5), 1339-1351. https://doi.org/10.1007/s00253-009-2354-4.

Wu, F., Zhang, G., & Yu, J. (2003). Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Communications in Soil Science and Plant Analysis, 34(13-14), 2003-2020. https://doi.org/10.1081/CSS-120023233.

Xiao, Y., Wu, X., Liu, D., Yao, J., Liang, G., Song, H., et al. (2020). Cell wall polysaccharide-mediated cadmium tolerance between two Arabidopsis thaliana ecotypes. Frontiers in Plant Science, 11, 473. https://doi.org/10.3389/fpls.2020.00473.

Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International, 31(5), 755-762.‏ https://doi.org/10.1016/j.envint.2005.02.004.

Yao, H. G., Zhang, H. M., &Tao, X. G. (2009). Influences of cadmium on grain mineral nutrient contents of two rice genotypes differing in grain cadmium accumulation. Rice Science, 16(2), 151-156. https://doi.org/10.1016/S1672-6308(08)60072-4.

Yazdi, M., Kolahi, M., Kazemi, E. M., & Barnaby, A. G. (2019). Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its phytochelatin synthase gene. Ecotoxicology and Environmental Safety, 180, 295-308. https://doi.org/10.1016/j.ecoenv.2019.04.071.

Yousefi, Z., Kolahi, M., Majd, A., & Jonoubi, P. (2018). Effect of Cd on morphometric traits, antioxidant enzyme activity and phytochelatin synthase gene expression (SoPCS) of Saccharum officinarum var. cp48-103 in vitro. Ecotoxicology and Environmental Safety, 157, 472-481.‏ https://doi.org/10.1016/j.ecoenv.2018.03.076.

Zhang, H., Osyczka, A., Dutton, P. L., & Moser, C. C. (2007). Exposing the complex III Qo semiquinone radical. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(7), 883-887. https://doi.org/10.1016/j.bbabio.2007.04.004.

Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H., & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-89322-0.

Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M. F., et al. (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; A comprehensive review. Frontiers in Plant Science, 5, 773815. https://doi.org/10.3389/fpls.2022.773815.

Downloads

Published

13. 12. 2024

Issue

Section

Original Scientific Article

How to Cite

Mahmoudi, P., Mohajel Kazemi, E., Mohajel Shoja, H., & Kolahi, M. (2024). Evaluation of the distribution of cadmium and its toxic effects on the biological responses of Nicotiana tabacum L. Acta Agriculturae Slovenica, 120(4), 1−14. https://doi.org/10.14720/aas.2024.120.4.15742