The development of agricultural use in the area of the photovoltaic power plant D3 next to the flow accumulation of the HE Brežice
DOI:
https://doi.org/10.14720/aas.2023.119.4.15746Keywords:
agrovoltaics, dual use of agricultural land, flow accumulation of HE Brežice, photosynthesis light saturation pointAbstract
Agrovoltaics as a method of dual use of agricultural land is the subject of many researches and projects of scientific research institutions and investors. The company Hidroeletrarne na Spodnji Savi, d.o.o. wants to develop the concept of agricultural use of agricultural land between and under the existing panels of the solar power plant. The solar power plant is located in the municipality of Brežice, the plots of land are in the cadastral municipality of Krška vas. The total area suitable for the development of agricultural use, on which the solar power plant is located, is 8.8 hectares. Through a case study, we reviewed the theoretical starting points for planning agricultural production in the area of the existing solar power plant. Through our study, we selected suitable species and varieties of plants that would be suitable for cultivation in this area. For the long-term financial sustainability of agricultural production, the study also checked the expected costs and revenues for the agricultural land use plan. Based on the case study, we conclude that this area could also be used for plant production, such as the production of asparagus, currants and raspberries. At the end of the research project, we proposed that in the future photovoltaics should be planned together with agricultural use, since there are significantly more possibilities for the dual use of agricultural land with the simultaneous planning of energy and agriculture.
References
Gorjian S., Bousi E., Ozdemir O. E., Trommsdorff M., Kumar N. M., Anand A., Kant K., Chopra S. S. (2022). Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-transparent Photovoltaic Technology. Renewable and Sustainable Energy Reviews, 158, New York: Pergamon. https://doi.org/10.1016/j.rser.2022.112126
Gorjian S., Ebadi H., Trommsdorff M., Sharon H., Demant M., Schindele S. (2021). The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. Journal of Cleaner Production, 292. https://doi.org/10.1016/j.jclepro.2021.126030
Harshavardhan D., Joshua P. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299-308. https://doi.org/10.1016/j.rser.2015.10.024
Herbert S J. (2018). Yield comparisons. UMass farm NREL Co-Location Project 2016-17.
HESS (2023). Načrt fotovoltaične elektrarne D3 ob pretočni akumulaciji HE Brežice, Interno gradivo.
Hidaka K., Dan K., Imamura H., Miyoshi Y., Takayama T., Sameshima K., Kitano M., Okimura M. (2023). Effect of supplemental lighting from different light sources in growth and yield of strawberry, Environmental Control Biology, 51(1), 41–47. https://doi.org/10.2525/ecb.51.41
Jerič D., Caf A., Jamnik S., Kocijančič M., Leskovar S., Oblak O., Simončič D., Simončič J., Sotlar M., Strniša T., Pajntar N., Šinko M. (2001). Katalog kalkulacij za načrtovanje gospodarjenja na kmetijah v Sloveniji, Slovenj Gradec, Kmetijska založba.
Ministrstvo za infrastrukturo (2022). Nacionalni energetski in podnebni načrt. Pridobljeno s https://www.gov.si/zbirke/projekti-in-programi/nacionalni-energetski-in-podnebni-nacrt/, 27. 12. 2022.
Ministrstvo za kmetijstvo, gozdarstvo in prehrano. (2022). Strateški načrt Skupne kmetijske politike. Pridobljeno s https://skp.si/skupna-kmetijska-politika-2023-2027, 27. 12. 2022.
Odredba o uskladitvi najnižje bruto urne postavke za opravljeno začasno ali občasno delo v kmetijstvu (2023). Uradni list RS, 34/23.
Stallknecht E. J., Herrera C. K., Yang C., King I., Sharkey T. D., Lunt R. R., Runkle E. S. (2023). Designing plant-transparent agrivoltaics. Scientific report, 13, 1903. https://doi.org/10.1038/s41598-023-28484-5
Takashi S, Nagashima A. (2019). Solar sharing for both food and clean energy production: performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments, 6, 65. https://doi.org/10.3390/environments6060065
Tani A, Shiina S, Nakashima K, Hayashi M. (2014) Improvement in lettuce growth by light diffusion under solar panels. Agricultural Meteorology, 70, 139-49. https://doi.org/10.2480/agrmet.D-14-00005
Trommsdorff M., Dhak I.S., Ozdemir O.E., Ketzer D., Weinberger N., Rosch C. (2022). Agrivoltaics: solar power generation and food production. Science Direct; Solar Energy Advancements in Agriculture and Food Production Systems, 159–210. https://doi.org/10.1016/B978-0-323-89866-9.00012-2
Trommsdorf M., Gruber S., Keinaht T., Hopf M., Hermann C., Schonberger F., Hogy P., Zikeli S., Ehmann A., Weselek A., Bodmer U., Rosch C., Ketzer D., Weinberger N., Schindele S., Vollprecht J. (2022). Agrivoltaics: Opportunities for Agri-culture and the Energy Transition. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 72 str.
Xin P., Li B., Zhang H., Hu J. (2019). Optimization and control use of the light environment for greenhouse crop production, Scientifiv Reports, 9, 8650. https://doi.org/10.1038/s41598-019-44980-z
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jože Podgoršek
This work is licensed under a Creative Commons Attribution 4.0 International License.