Influence of mulches on soil moisture and water infiltration in the tomato crop

Authors

  • Imerina TANKEUOO KOPA National Higher School of Hydraulics (ENSH), Water and Environmental Engineering Laboratory (GEE), Blida, Algeria
  • Mohamed MEDDI National Higher School of Hydraulics (ENSH), Water and Environmental Engineering Laboratory (GEE), Blida, Algeria
  • Abdelhadi AMMARI National Higher School of Hydraulics (ENSH), Water and Environmental Engineering Laboratory (GEE), Blida, Algeria

DOI:

https://doi.org/10.14720/aas.2023.119.4.15748

Keywords:

tomatoes, mulching, soil moisture, infiltration, soil electrical conductivity

Abstract

Soil moisture is a key parameter of soil monitoring for observation of vegetation growth, predicting crop production, and improving water resource management. In this study, the objective is to compare the evolution of soil moisture in different mulches to determine the best mulch and its characteristics of infiltration in the soil. The experiment was conducted during the summer season in July-September 2022 on four different mulches (wood chips, sawdust, straw, mixture), and control at the experimental plot of Blida. The results showed that silt is the main matrix of the soil. The analysis of infiltration data identified modified Kostiakov as the best model of the study site, whose period of plant growth represents the phase during which we have a better infiltration under the mixture. The application of the mulch changes the moisture mainly at 15 cm and the conductivity at 10 cm. In addition, the mixture is the best mulch to conserve moisture in the soil while reducing the frequency of irrigation. The correlation between soil moisture and conductivity was overall very good. This was due to the effect of mulch, soil texture, plant root development, and capillary rise.

References

Adams J.E. (1966). Influence of mulches on runoff, erosion, and soil moisture depletion. Soil Science Society of America Journal, 30, 110–114. https://doi.org/10.2136/sssaj1966.03615995003000010036x

Ahmad, S., Raza, M., A. S., Saleem, M., F., Zaheer, M., S., Iqbal, R., Haider, I., Aslam, M., U., Ali, M., Khan, I., H. (2020). Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. Journal of Animal and Plant Sciences, 3, 154–162.

Almetwally, M., Soussa, H., Fattouh, E. M. (2019). Environmentally friendly soil water conservation techniques. International Journal of Engineering and Advanced Technology, 9(1), 5513–5520. https://doi.org/10.35940/ijeat.A2045.10911

Amichi, F., Bouarfa, S., Lejars, C., Kuper, M., Hartani, T., Daoudi, A., Amichi, H., Belhamra, M. (2015). Des serres et des hommes : Des exploitations motrices de l’expansion territoriale et de l’ascension socioprofessionnelle sur un front pionnier de l’agriculture saharienne en Algérie. Cahiers Agricultures, 24(1), 11–19. https://doi.org/10.1684/agr.2015.0736

Bear, J.(1972). Dynamics of fluids in porous media. American Elsevier publishing company, New York, 764 p

Boyer, L. (2021). Revue de littérature systématique sur le potentiel d’utilisation des paillis organiques à améliorer la qualité des sols et de la durabilité des vergers de pommes québécois. Rapport de fin d’étude, Université de Laval, 61p.

Chachoua I. (2015). L’urée dans l’alimentation des ovins : conséquences sur la gestation, la parturition et le croît. Thèse de Doctorat en sciences, universite el-hadj lakhdar-batna, Algérie. 133p

Chaux, C.L. et Foury, C.L., (1994). Cultures légumières et maraichères. Tome III : légumineuses potagères, légumes fruit. Tec et Doc Lavoisier, Paris. 563p.

Chalker-Scott, L. (2007). Wood chip mulch : Landscape boon or bane ? 21–23.

Corwin, D.L. and Lesch, S.M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11-43. https://doi.org/10.1016/j.compag.2004.10.005

Costa, M. M., de Queiroz, D. M., de Carvalho Pinto, F. de A., dos Reis, E. F., Santos, N. T. (2014). Efeito do teor de água na relação entre a condutividade elétrica aparente e atributos do solo. Acta Scientiarum - Agronomy, 36(4), 395–401. https://doi.org/10.4025/actasciagron.v36i4.18342

Dinushika, W., Mumtaz, C., Raymond, T., Lakshman, G. (2019). Effect of biochar on TDR-based volumetric soil moisture measurements in a loamy sand podzolic soil. Soil Systems, 3(3), 1–12. https://doi.org/10.3390/soilsystems3030049

Djouda-Hallal D. (2014). Approche méthodologique de la vulnérabilité de la ressource en eau souterraine en milieu fortement urbanisé: exemple en Algérie des plaines littorales (Mitidja). Thèse de doctorat.USTHB, 157 p.

Donagemma, G. K. et al. (2008). Solution equilibrium phosphorus in clay and silt fractions of oxisols after particle size analysis pre-treatments. Revista Brasileira de Ciência do Solo, 32(2-4), 1785-1791. https://doi.org/10.1590/S0100-06832008000400043

Duchaufour, H., M. Bizimana, E. Roose , Mikokoro, C. (2017). Efficacité des haies mixtes, du fumier et du paillage pour la conservation de l’eau et la restauration de la productivité d’un sol ferralitique argileux acide du Burundi. In E. Roose (edit.) Restauration de la productivité des sols tropicaux et méditerranéens. Contribution à l’agroécologie. pp. 603-611. https://doi.org/10.4000/books.irdeditions.24492

Ecrement, Y., et Seghir, B. (1971). Etude agro-pédologique de la plaine de la Mitidja et carte 1/50 000, Alger : Institut Géographique National.

Farid, H. U., Mahmood-Khan, Z., Ahmad, I., Shakoor, A., Anjum, M. N., Iqbal, M. M., Mubeen, M., Asghar, M. (2019). Estimation of infiltration models parameters and their comparison to simulate the onsite soil infiltration characteristics. International Journal of Agricultural and Biological Engineering, 12(3), 84–91. https://doi.org/10.25165/j.ijabe.20191203.4015

Freire, E. R., Almeida, A., & Koide, S. (2020). Avaliação das medições de umidade utilizando sonda de reflectometria no domínio do tempo (TDR) com tubos de acesso em material padrão e alternativo. Xv Simpósio De Recursos Hídricos Do Nordeste, 61.

Furman, A., Warrick, A. W., Zerihun, D., & Sanchez, C. A. (2006). Modified Kostiakov Infiltration Function: Accounting for Initial and Boundary Conditions. Journal of Irrigation and Drainage Engineering, 132(6), 587–596. https://doi.org/10.1061/(asce)0733-9437(2006)132:6(587)

Goel, L., Shankar, V., & Sharma, R. K. (2020). Effect of organic mulches on agronomic parameters – a case study of tomato crop (Lycopersicon esculentum Mill.). International Journal of Recycling of Organic Waste in Agriculture, 9(3), 297–307. https://doi.org/10.30486/IJROWA.2020.1887263.1015

Irinslimane, H. (2007), Etude de l’adsorption d’un pesticide sur matériaux de récupération (sciure de bois et chutes de liège). Mémoire de Magister, Ecole Nationale Polytechnique, Alger, 69 p

Jacks, C. V. Brind, W. D. and Smith, R. (1955). Mulching Technology Comm., No. 49, Common Wealth. Bulletin of Soil Science, 118p.

Kaboneka, S., Nsavyimana, G., Bizimana, S., Bicereza, D. (2021). Cinétique de décomposition de la paille de blé dans un sol acide du Mugamba Sud (Burundi): effet du mode d’application. 10-19.

Kumar, S., and Dey, P. (2011). Effects of different mulches and irrigation methods on root growth , nutrient uptake , water-use efficiency and yield of strawberry. Scientia Horticulturae, 127(3), 318–324. https://doi.org/10.1016/j.scienta.2010.10.023

Kumar D.K., Lal B.R. (2012). Effect of mulching on crop production under rainfed condition: a review. International Journal of Research in Chemistry and Environment, 2(2), 8-20.

Haghiabi, A. H., Abedi-Koupai, J., Heidarpour, J. M., Mohammadzadeh-Habili, J. (2011). A new method for estimating the parameters of Kostiakov and modified Kostiakov infiltration equations. World Applied Sciences Journal, 15(1), 129–135.

Haverkamp, R., Kutilek, M., Parlange, J.-Y., Rendon, L., and Krejca, M. (1988). Infiltration under ponded conditions: 2. Infiltration equations tested for parameter time-dependence and predictive use. Journal of Soil Science, 145, 317–329. https://doi.org/10.1097/00010694-198805000-00001

Kostiakov, A N. (1932). On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of Amelioration. Transactions International Society of Soil Science. 6th Commission, Moscow, Part A: 17. (in Japanese)

Laribi S., Boutonnet J.-P., Brabez Fn Adem R. et. Kheffache H. (2023). Les formes d’intégration agriculture -élevage. Le cas des systèmes de polyculture-élevage. Les Cahiers du Cread, 39, 307–348. DOI: 10.4314/cread.v39i1.11

Lamont, W.J. A.D. (2005). Index, Features Plastics: Modifying the Microclimate for the Production of Vegetable Crops, 15. https://doi.org/10.21273/HORTTECH.15.3.0477

Liao, Y., Cao, H. X., Liu, X., Li, H. T., Hu, Q. Y., & Xue, W. K. (2021). By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agricultural Water Management, 253(26), 106936. https://doi.org/10.1016/j.agwat.2021.106936

MADR (2009). Bilan du programme quinquennal du secteur agricole et rural 2005-2009, Rapport interne, 51 p.

MADR (2011). Le Renouveau Agricole en chiffres. Rapport d’étape. Contrats de performance 2009- 2010 et prévisions de clôture 2011, Alger. 116 p.

Meddi, M., Meddi, H., Toumi, S., Mehaiguen, M. (2013). Regionalization of rainfall in north-western Algeria. Geographia Technica, 1, 56–69.

Mirzaee, S., Zolfaghari, A. A., Gorji, M., Dyck, M., & Ghorbani Dashtaki, S. (2014). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Archives of Agronomy and Soil Science, 60(5), 681–693. https://doi.org/10.1080/03650340.2013.823477

Mishra, S. K., Tyagi, J. V., & Singh, V. P. (2003). Comparison of infiltration models. Hydrological Processes, 17(13), 2629–2652. https://doi.org/10.1002/hyp.1257

Mkhabela, K. T., Dlamini, M. V, & Manyatsi, A. M. (2019). The effect of mulching on soil moisture retention and yield of lettuce ( Lactuca sativa L .). International Journal of Environmental & Agriculture Research, 5(9), 47–50.

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L. et al. (2007). Model evaluation guidelines for sys- tematic quantification of accuracy in watershed simulations. Trans ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153

Nicolardot, B., Recous, S., & Mary, B. (2001). Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C : N ratio of the residues. Plant and Soil, 228(1), 83–103. https://doi.org/10.1023/A:1004813801728

Niyazi, B., Masoud, M., Elfeki, A., Rajmohan, N., Alqarawy, A., & Rashed, M. (2022). A comparative analysis of infiltration models for groundwater recharge from ephemeral stream beds: A case study in Al Madinah Al Munawarah Province, Saudi Arabia. Water (Switzerland), 14(11). https://doi.org/10.3390/w14111686

Oku, E., and Aiyelari, A. (2011). Predictability of Philip and Kostiakov infiltration models under inceptisols in the humid forest zone, Nigeria. Kasetsart Journal, 45, 594–602.

Pakdel, P, A. Tehranifar, H. Nemati, A. Lakzian, M., Kharrazi (2013). Effect of different mulching materials on soil properties under semi- arid conditions in north-eastern Iran. Wudpecker, Journal of Agricultural Research, 2(3), 80-85.

Philip, J R. (1957). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 84, 257–264. https://doi.org/10.1097/00010694-195709000-00010

Rasmussen, K.J. (1999) Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil and Tillage Research, 53, 3-14. http://dx.doi.org/10.1016/S0167-1987 (99)00072-0

Robinson G. W. (1949). Soils. Their origin, constitution and classification. London.Thomas Murby & Co, N.Y.J. Wiley & Sons Inc., 573 p

Sadek, I. I., Youssef, M. A., Solieman, N. Y., & Alyafei, M. A. M. (2019). Response of soil properties, growth, yield and fruit quality of cantaloupe plants (Cucumis melo L.) to organic mulch. Merit Research Journal of Agricultural Science and Soil Sciences, 7(9), 100–106. https://doi.org/10.5281/zenodo.3463634

Safari, N., Kazemi, F., & Tehrani, A. (2021). Examining temperature and soil moisture contents of mulches in the urban landscaping of an arid region. Journal of Desert, 26(2), 139–156. https://doi.org/10.22059/jdesert.2020.256170.1006639

Sharma, S., Basnet, B., Bhattarai, K., Sedhai, A., & Khanal, K. (2023). The influence of different mulching materials on Tomato’s vegetative, reproductive, and yield in Dhankuta, Nepal. Journal of Agriculture and Food Research, 11(December), 100463. https://doi.org/10.1016/j.jafr.2022.100463

Simsek, U., Erdel, E., & Barik, K. (2017). Effect of mulching on soil moisture and some soil characteristics. Fresenius Environmental Bulletin, 26(12), 7437–7443.

Skhiri, A. (2019). Les Bases de l’Irrigation : Calcul des besoins en eau. April, 97p.

Smerdon, E.T., Blair, AW. (1988). Infiltration à partir des données avancées d’irrigation. II: Expérimental. Journal of Irrigation and Drainage Engineering, 114(1), 18-30. https://doi.org/10.1061/(asce)0733-9437(1988)114:1 (18)

Stagnari, F., Galieni, A., Speca, S., Cafiero, G., & Pisante, M. (2014). Field crops research effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in mediterranean environment. Field Crops Research, 167, 51–63. https://doi.org/10.1016/j.fcr.2014.07.008

Stelli, S., Hoy, L., Hendrick, R., & Taylor, M. (2018). Effects of different mulch types on soil moisture content in potted shrubs. Journal of Water SA, 44(3), 495–503. https://doi.org/10.4314/wsa.v44i3.17

Tarchag, C. (2020). Effet des doses d’irrigation sur la culture de tomate dans la région de Biskra. Mémoire de Master, Université de Biskra-Algérie, 51p.

Telkar S. G., Shivkumar & Kant, Kamal & Pratap, Shivendu & Solanki, Shivendu. (2017). Effect of mulching on soil moisture conservation. Journal of Biomolecule Reports, 4p.

Vand, A. S., Sihag, P., Singh, B., & Zand, M. (2018). Comparative evaluation of infiltration models. KSCE Journal of Civil Engineering, 22(10), 4173–4184. https://doi.org/10.1007/s12205-018-1347-1

Xing, X., Li Y., Ma X. (2017). Effects on infiltration and evaporation when adding rapeseed-oil residue or wheat straw to a loam soil. Journal of Water, 9(9), 700. https://doi.org/10.3390/w9090700

Yuemei, H., Xiaoqin, Z., Jianguo, S., & Jina, N. (2008). Conduction between left superior pulmonary vein and left atria and atria fibrillation under cervical vagal trunk stimulation. Colombia Medica, 39(3), 227–234.

Zegada-Lizarazu and Berliner. (2011). The effects of the degree of soil cover with an impervious sheet on the establishment of tree seedlings in an arid environment. New Forests, 42,

–17. https://doi.org/10.1007/s11056-010-9233-9

Zhang, J. B., Yang, J. S., Yao, R. J., Yu, S. P., Li, F. R., & Hou, X. J. (2014). The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. Journal of Integrative Agriculture, 13(8), 1782–1790. https://doi.org/10.1016/S2095-3119(13)60530-4

Zolfaghari, AA, Mirzaee, S., et Gorji, M. (2012). Comparaison de différents modèles pour estimer l’infiltration cumulée. Journal International des Sciences du Sol, 7(3), 108. DOI : 10.3923/ijss. 2012.108.115.

Downloads

Published

13. 12. 2023

Issue

Section

Original Scientific Article

How to Cite

TANKEUOO KOPA, I., MEDDI, M., & AMMARI, A. (2023). Influence of mulches on soil moisture and water infiltration in the tomato crop. Acta Agriculturae Slovenica, 119(4), 1–16. https://doi.org/10.14720/aas.2023.119.4.15748