Mycoviruses: trends in plant-fungus-mycovirus interactions and ‘biocontrol’ prospects in agriculture and the environment

Authors

  • Elias Mjaika NDIFON Alex Ekwueme Federal University Ndufu-Alike, Faculty of Agriculture, Department of Crop Science, Abakaliki, Niger
  • Gilbert Nchongboh CHOFONG Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany

DOI:

https://doi.org/10.14720/aas.2023.119.3.2971

Keywords:

control, disease complex, fungi synergy, integrated pest management, phage, relationship

Abstract

Mycoviruses are cosmopolitan in plants, animals, fungi, bacteria, in soils, and water. There is a scarcity of information about them, which necessitated this review to provide some leads on where research should focus. Mycoviruses are able to persist in disparate types of hosts by utilizing diverse measures. They may engage either parasitic, pathogenic, or mutualistic tendencies. Mycoviruses employ many existential strategies that can be utilized by man. Hypovirulence may be induced in fungal hosts by mycoviruses via RNA silencing, alteration of genetic expression, and disruption of the transcriptome. Mycoviruses interact with killer phenotypes of yeasts and Ustilago spp. and proffer advantages to these fungi. Mycovirus interaction with some plants result in provision of thermal tolerance to plants. Based on their mode of microbe destruction mycoviruses may be used for waste disposal and termination of some life processes. For instance, grazer viruses completely oxidize the organic content of their host into carbon dioxide and inorganic nutrients, while lytic viruses release the organic material from their hosts without modification. Viruses may be utilized to facilitate the exchange of genetic material from one host to another. However, pathogenic mycoviruses exist especially in mushrooms.

References

Adams, M. J. (1991). Transmission of plant viruses by fungi. Annals of Applied Biology, 118(2), 479–492. https://doi.org/10.1111/j.1744-7348.1991.tb05649.x

Alemu T., Hamacher, J., & Dehne, H. W. (2002). The role of some weeds as hosts of Capsicum viruses in the rift valley parts of Ethiopia. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet., 67(2), 283-9. Institute for Plant Diseases, University of Bonn, Nussallee 9, 53115 Bonn, Germany

Alvarez-Jubete, L., Bonnier, F., Byrne, H., Grogan, H., & Frias, J. M. (2011). Detection of mushroom Virus X (MVX) infection in asymptomatic mushrooms using FTIR microscopic imaging. Poster Presentation at the 11th International Conference of Engineering and Food (ICEF11), May 2011, Athens, Greece

Anagnostakis, S. L., Chen, B., Geletka, L. M., & Nuss, D. L. (1998). Hypovirus Transmission to Ascospore Progeny by Field-Released Transgenic Hypovirulent Strains of Cryphonectria parasitica. Phytopathology. 88(7), 598–604. https://doi.org/10.1094/PHYTO.1998.88.7.598

Araújo, A., Jansen, A. M., Bouchet, F., Reinhard, K., & Ferreira, L. F. (2003). Parasitism, the diversity of life, and paleoparasitology. Memórias do Instituto Oswaldo Cruz, 98 (SUPPL. 1), 5-11. https://doi.org/10.1590/S0074-02762003000900003

Beakes, G.W., Honda, D. & Thines, M. (2014). Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In: The mycota systematics and evolution, VII part A: (2nd ed.), (eds D.J. McLaughlin & J.W. Spatafora), pp 39-97. Berlin, Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-55318-9_3. VIEW on Amazon

Beilei, W., Mei, Li, Chenchen, Liu & Xiliang, Jiang. (2020). The insight of mycovirus from Trichoderma spp. Agriculture Research and Technology: Open Access Journal 24(2). DOI: 10.19080/ARTOAJ.2020.24.556258

Biella, S., Smith, M. L., Aist, J. R., Cortesi, P., & Milgroom, M. G. (2002). Programmed cell death correlates with virus transmission in a filamentous fungus. Proceedings of Biological Science. 269(1506), 2269–2276. https://doi.org/10.1098/rspb.2002.2148

Bozarth, R. F. (1972). Mycoviruses: a new dimension in microbiology. Environmental Health Perspectives. 2(1), 23–39. https://doi.org/10.1289/ehp.720223

Brussaard, C. P. D. (2004). Viral control of phytoplankton populations – a review. Journal of Eukaryotic Microbiology, 51, 125–138. https://doi.org/10.1111/j.1550-7408.2004.tb00537.x

Buck, K. W. (1986). Fungal virology-An overview. Boca Raton Florida: CRCPress, Boca Raton 1-84.

Cavalier-Smith, T. (2018). Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma, 255, 297-357. https://doi.org/10.1007/s00709-017-1147-3

Chen, B., Choi, G. H., & Nuss, D. L. (1994). Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science, 264(5166), 1762–4. https://doi.org/10.1126/science.8209256

Cho, W. K., & Kook-Hyung, K., (2013). Mycoviruses. Advances in Virus Research, 2013.

Chu, Y. M., Jeon, J. J., Yea, S. J., Kim, Y. H., & Yun, S. H. (2002). Double-stranded RNA mycovirus from Fusarium graminearum. Applied Environmental Microbiology, 68, 2529–2534. https://doi.org/10.1128/AEM.68.5.2529-2534.2002

Connor, P. (2021). A biocontrol pesticide derived from mycovirus-infected Sclerotinia sclerotiorum can induce plant resistance. Electronic Theses and Dissertations. 5244. South Dakota State University, USA. https://openprairie.sdstate.edu/etd/5244

De FILIPPIS, V., & Villarreal, L. P. (2000). Viral ecology. An introduction to the evolutionary ecology of viruses. PMC7149709.: 125–208. https://doi.org/10.1016/B978-012362675-2/50005-7

Deng, F., Xu, R., & Boland, G. J. (2003). Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi Mitovirus 3a-Ld. Phytopathology, 93(11), 1407–14. https://doi.org/10.1094/PHYTO.2003.93.11.1407

Drinnenberg, I .A., Fink, G. R., & Bartel, D. P. (2011). Compatibility with killer explains the rise of RNAi-deficient fungi. Science, 333, 1592. https://doi.org/10.1126/science.1209575

Ezawa, T., Yoji, I., Hanako, S., Chikara, M., Tatsuhiro, E., Yoji, I., Hanako, S., & Chikara, M. (2015). Detection and characterization of mycoviruses in arbuscular mycorrhiza. Methods in molecular biology: Plant Virology Protocols. https://doi.org/10.1007/978-1-4939-1743-3_13

Fargette, D., Konaté, G., Fauquet, C., Muller, E., Peterschmitt, M., & Thresh, J. M. (2006). Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44; 235-260. https://doi.org/10.1146/annurev.phyto.44.120705.104644

Fine, P.E.F. (1975). Vectors and vertical transmission: An epidemiological perspective. Annals of New York Academy of Science, 266, 173–194. https://doi.org/10.1111/j.1749-6632.1975.tb35099.x

García-Pedrajas, M.D., Cañizares, M.C., Sarmiento-Villamil, J.L., Jacquat, A.G., & Dambolena, J.S. (2019). Mycoviruses in biological control: from basic research to field implementation. Epub, 109(11), 1828-1839. https://doi.org/10.1094/PHYTO-05-19-0166-RVW

Ghabrial, S. A., & Suzuki, N. (2008). Fungal Viruses. In B. W. J. Mahy and M. H. V. Van Regenmortel (ed.), Encyclopedia of virology, 3rd ed., vol. 2. Elsevier, Oxford, United Kingdom. p. 284-291. https://doi.org/10.1016/B978-012374410-4.00563-X

Ghabrial, S. A., & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Review of Phytopathology 47, 353–84. https://doi.org/10.1146/annurev-phyto-080508-081932

Ghabrial, S. A., Castón, J. R., Jiang, D., Nibert., M. L., & Suzuki, N. (2015). 50-plus years of fungal viruses. Virology, 479, 356–368. https://doi.org/10.1016/j.virol.2015.02.034

Griffin, D.E. (1997). Virus-induced immune suppression. In: Nathanson N., editor. Viral Pathogenesis. Lippincott-Raven; New York: pp. 207–233.

Hacker, C.V., Brasier, C.M., & Buck, K.W. (2005). A double‐stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. Journal of Genetics and Virology, 86, 1561–1570. https://doi.org/10.1099/vir.0.80808-0

Hammond, R. W., & Zhao, Y. (2000). Characterization of tomato protein kinase gene induced by infection by potato spindle tuber viroid. Molecular Plant-Microbe Interactions, 13, 903-910. https://doi.org/10.1094/MPMI.2000.13.9.903

Hollings, M. (1962). Viruses Associated with A die-back disease of cultivated mushroom. Nature, 196(4858), 962–965. Bibcode:1962Natur.196..962H. https://doi.org/10.1038/196962a0

Hough, B., Steenkamp, E., & Wingfield, B. (2023). Fungal viruses unveiled: a comprehensive review of mycoviruses. Kotta-Loizou, D.R.I. (Academic Editor). Viruses, 15(5), 1202. https://doi.org/10.3390/v15051202

Howitt, R. L., Beever, R. E., Pearson, M. N., & Forster, R. L. (2006). Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant ‚potex-like‘ viruses. Archives of Virology, 151(3), 563–579. https://doi.org/10.1007/s00705-005-0621-y

Hu, H. J., Wang, J. R., Cheng, X. H., Liu, Y., & Zhang, X.Y. (2022). Preliminary studies on the effects of oyster mushroom spherical virus China strain on the mycelial growth and fruiting body yield of the edible mushroom Pleurotus ostreatus. Biology, 11, 574. https://doi.org/10.3390/biology11040574

Kazinczi, G., Horváth, J., Takács, A. P., Gáborjányi, R., & Béres, I. (2004). Experimental and natural weed host-virus relations. Community Agriculture and Applied Biological Science, 69(3), 53-60.

Khan, H.A., Mukhtar, M., & Bhatti, M. F. (2023). Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Brazilian Journal of Microbiology (2023). https://doi.org/10.1007/s42770-023-01073-4

Khan, H. A., Telengech, P., Hideki, K., Muhammad, F. B., & Nobuhiro, S. (2022). Mycoviruses of pathogenic fungi: The current research landscape. mycovirus hunting revealed the presence of diverse viruses in a single isolate of the phytopathogenic fungus Diplodia seriata From Pakistan. Frontiers in Cellular Infection Microbiology. Section. Fungal Pathogenesis. 29 June 2022. https://doi.org/10.3389/fcimb.2022.913619

King, A. M. Q., Lefkowitz E. M., Adams, J., & Carstens, E. B. (2011). Virus taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (ICTV). San Diego, USA: Elsevier Academic.

Kirchman, D. L. (2018). The ecology of viruses. Processes in microbial ecology, 2nd edn. Oxford Academic. online ed. https://doi.org/10.1093/oso/9780198789406.003.0010

Kong, Q., Oh, J., Carpenter, C.D., & Simon, A.E. (1997). The coat protein of turnip crinkle virus is involved in subviral rna-mediated symptom modulation and accumulation. Virology, 238, 478–485. https://doi.org/10.1006/viro.1997.8853

Kotta-Loizou, I., & Coutts, R. H. (2017). Aspergilli: A comprehensive review. Frontiers in Microbiology, 8, 1699. PMC 5592211. PMID 28932216. https://doi.org/10.3389/fmicb.2017.01699

Kotta-Loizou, I. (2019). Mycoviruses: Past, Present, and Future. Viruses, 11, 361; www.mdpi.com/journal/viruses. https://doi.org/10.3390/v11040361

Kotta-Loizou, I. (2021). Mycoviruses and their role in fungal pathogenesis. Current Opin Microbiology, 63, 10-18. https://doi.org/10.1016/j.mib.2021.05.007

Lau, S. K., Lo, G. C., Chow, F. W., Fan, R. Y., Cai, J. J., Yuen, K. Y., & Woo, P. C. (2018). Novel partitivirus enhances virulence of and causes aberrant gene expression in Talaromyces marneffei. Biology, 9(3), e00947–18. https://doi.org/10.1128/mBio.00947-18. PMC 6016240.

Lenski, R. E., & Levin, B. R. (1985). Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. The American Naturalist, 125(4), 585–602. https://doi.org/10.1086/284364. JSTOR 2461275.

Li, X.H., Heaton, L.A., Morris, T. J., Simon, A.E. (1989). Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proceeding Natnaiol Academy of Science of USA. 86(23):9173-7. https://doi.org/10.1073/pnas.86.23.9173

Li, P., Bhattacharjee, P., Wang, S., Zhang, L., Ahmed, I., & Guo, L. (2019). Mycoviruses in Fusarium Species: An Update. Frontier Cell Infection and Microbiology, 9, 257. https://doi.org/10.3389/fcimb.2019.00257

Li, P., Wang, S., Zhang, L., Qiu, D., Zhou, X., & Guo, L. (2020). A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. Science Advances, 6(14), eaay9634. Bibcode:2020SciA....6.9634L. https://doi.org/10.1126/sciadv.aay9634

Liu, Y. C., Linder-Basso, D., Hillman, B. I., Kaneko, S., & Milgroom, M. G. (2003). Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Molecular Ecology, 12(6), 1619–1628. https://doi.org/10.1046/j.1365-294X.2003.01847.x

Liu, Y. C., & Milgroom, M. G. (2007). High diversity of vegetative compatibility types in Cryphonectria parasitica in Japan and China. Mycologia, 99(2), 279–284. https://doi.org/10.3852/mycologia.99.2.279

Liu, H., Wang, H., Liao, X.L., .... & Zhouqian, Q.Z. (2022). Pathogenic fungus into a biocontrol agent. Proceeding Natnaiol Academy of Science of USA, 119(50), e2214096119. https://doi.org/10.1073/pnas.2214096119.

Márquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science, 315(5811), 513–515. Bibcode:2007Sci...315..513M. https://doi.org/10.1126/science.1136237

Marquina, D., Santos, A., & Peinado, J. M. (2002). Biology of killer yeasts. International Microbiology, 5(2), 65–71. https://doi.org/10.1007/s10123-002-0066-z

Marzano, S-Y. L., Hobbs, H. A., Nelson, B. D., Hartman, G.L., .... & Eastburn, D. M. (2015). Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. Journal of Virology, 89, 5060–5071. https://doi.org/10.1128/JVI.03199-14

McCabe PM, Pfeiffer P, & Van Alfen NK 1999. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends in Microbiology, 7(9), 377–81. https://doi.org/10.1016/S0966-842X(99)01568-1

McGovern, R. J., Polstonb, J. E. & Mullahey, J. J. (2008). pages 270-273.

Melzer, M. S., Deng, F., and Boland, G. J. (2005). Asymptomatic infection, and distribution of Ophiostoma mitovirus 3a (OMV3a), in populations of Sclerotinia homoeocarpa. Canadian Journal of Plant Pathology, 27(4), 610–615. https://doi.org/10.1080/07060660509507262

Mycovirus. (no date). From Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Mycovirus&oldid=1102583069.

Myers, J., Bonds, A., Clemons, R., Thapa, N., Simmons, D., Carter-Hous, D., Ortanez, J., Liu P., Miralles-Durán, A., & Desirò, A. (2020). Survey of early-diverging lineages of fungi reveals abundant and diverse mycoviruses. Microbiology, 11, e02027-20. https://doi.org/10.1128/mBio.02027-20

Myers, J. M., & James, T. Y. (2022). Mycoviruses. Current Biology, 32(4), R150-R155. PMID: 35231405. https://doi.org/10.1016/j.cub.2022.01.049

Nuss, D. L. (2005). Hypovirulence: Mycoviruses at the fungal–plant interface. Nature Reviews Microbiology, 3, 632–642. https://doi.org/10.1038/nrmicro1206

Nuss, D. L. (2011). Mycoviruses, RNA silencing, and viral RNA recombination. In Advances in Virus Research. https://doi.org/10.1016/B978-0-12-385987-7.00002-6

O‘Malley, M. A. (2016). Studies in history and philosophy of science. Part C: Studies in history and philosophy of biological and biomedical sciences. The Ecological Virus, 59, 71-79. https://doi.org/10.1016/j.shpsc.2016.02.012

Ong, J.W.L., Li, H., Sivasithamparam, K., et al. (2016). Novel endornalike viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae. Virology,499, 203–211. https://doi.org/10.1016/j.virol.2016.08.019

Payet, J. P., McMinds, R., Burkepile, D. E. & Vega-Thurber, R. L. (2014). Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean. Frontiers in Microbiology, 5, 493. https://doi.org/10.3389/fmicb.2014.00493

Pearson, M .N., Beever, R. E., Boine, B., & Arthur, K. (2009). Mycoviruses of filamentous fungi and their relevance to plant pathology. Molecular Plant Pathology, 10(1), 115–128. https://doi.org/10.1111/j.1364-3703.2008.00503.x

PVEN (Plant Virus Ecology Network). (2011). Pest management guidelines. 2011. Floriculture and ornamental nurseries. Viruses and Viroid Diseases, http://dx.doi.org/10.1016/j.virusres.2011.05.010

Ro, H. S., Lee, N. J., Lee, C. W., & Lee, H. S. (2006). Isolation of a novel mycovirus OMIV in Pleurotus ostreatus and its detection using a triple antibody sandwich-ELISA. Journal of Virological Methods, 138(1–2), 24–29. https://doi.org/10.1016/j.jviromet.2006.07.016

Rochon, D., Kakani, K., Robbins, M., & Reade, R. (2004). Molecular aspects of plant virus transmission by olpidium and plas¬modiophorid vectors. Annual Reviews of Phytopathology, 42, 211–241. https://doi.org/10.1146/annurev.phyto.42.040803.140317

Roux, L., Simon, A. E., and Holland, J. J. (1991). Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Advances in Virus Research, 40, 181-211. https://doi.org/10.1016/S0065-3527(08)60279-1

Rowley, P.A. (2016). The hidden viruses of the fungal kingdom. Issue: Fungal diseases. Microbiology society publication USA.

Rubio, T., Borja, M., Scholthof, H. B., Feldstein, P. A., Morris, T. J., & Jackson, A. O. (1999). Broad-spectrum protection against tombusviruses elicited by defective interfering RNAs in transgenic plants. Journal of General Virology, 73, 5070-5078. https://doi.org/10.1128/JVI.73.6.5070-5078.1999

Ruiz-Padilla, A., Rodríguez-Romero, J., Gómez-Cid, I., Pacifico, D., & Ayllón, M.A. (2021). Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. Microbiology, 12(3), e03705-20. https://doi.org/10.1128/mBio.03705-20

Keçeli, S.A. (2017). [Mycoviruses and importance in mycology] [Article in Turkish]. 51(4):404-412. https://doi.org/10.5578/mb.54128

Schmitt, M. J., & Breinig, F. (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiology Reviews, 26(3), 257–76. https://doi.org/10.1016/S0168-6445(02)00099-2. PMID 12165427.

Schmitt, M. J., & Breinig, F. (2006). Yeast viral killer toxins: lethality and selfprotection. National Review of Microbiology, 4(3), 212-221. https://doi.org/10.1038/nrmicro1347

Segers, G. C., Zhang, X., Deng, F., Sun, Q., & Nuss, D. L. (2007). Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proceedings of National Academy of Science USA, 104, 12902–12906. https://doi.org/10.1073/pnas.0702500104

Shelford, E. J., Middelboe, M., Møller, E. F., & Suttle, C. A. (2012). Virus-driven nitrogen cycling enhances phytoplankton growth. Aquatic Microbiology and Ecology, 66, 41–46. https://doi.org/10.3354/ame01553

Siddique, A.B. (2020). Viruses of endophytic and pathogenic forest fungi. Virus Genes, 56, 407–416. https://doi.org/10.1007/s11262-020-01763-3

Suttle, C. A. (2007). Marine viruses – major players in the global ecosystem. National Review Microbiology, 5, 801–812. https://doi.org/10.1038/nrmicro1750

Suzuki, N., Cornejo, C., Aulia, A., Shahi, S., Hillman, B. I, Rigling, D. .... & Suzuki, N. (2021). In-tree behavior of diverse viruses harbored in the chestnut blight fungus, Cryphonectria parasitica. Journal of Virology, 95(6), e01962-20. https://doi.org/10.1128/JVI.01962-20

Tran, T. T., Li, H., Duy, Q., Nguyen, M., Jones, G. K., & Wylie, S. J. (2019). Communication co-infection with three mycoviruses stimulates growth of a Monilinia fructicola isolate on nutrient medium, but does not induce hypervirulence in a natural host. Viruses, 11, 89. www.mdpi.com/journal/viruses. https://doi.org/10.3390/v11010089

van Diepeningen, A. D., Debets, A. J., & Hoekstra, R. F. (2006). Fungal Genetics and Biology, 43(6), 446-452. https://doi.org/10.1016/j.fgb.2006.01.014

Varga, J., Tóth, B., & Vágvölgyi, C. (2003). Recent advances in mycovirus research. Acta Microbiologica et Immunologica Hungarica, 50(1), 77–94. https://doi.org/10.1556/AMicr.50.2003.1.8

Vidhyasekaran, P. (2004). Concise encyclopedia of plant pathology. ISBN 1-56022-942-X (hard cover: alk. paper)—ISBN 1-56022-943-8 (pbk. : alk. paper). Food Products Press® The Haworth Reference Press Imprints of The Haworth Press, Inc. New York London Oxford. 619 pp. https://doi.org/10.1201/9781482277951

Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28, 127–181. https://doi.org/10.1016/j.femsre.2003.08.001

Woodhall, J.V., Smith, J. E., Mills, P.R., & Sansford, C.E. (2009). A UK commodity pest risk analysis for the cultivated mushroom, Agaricus bisporus, p: 59. Commodity PRA for mushrooms CSL/Warwick HRI, December 18th 2007; revised 24 February 2009. CSL R File No. PPP 12011A

Xia, L. C., Li, M., Gao, Z.Y., Gong D., Hong X. Y., Jiang Y., ... & Hu MeiJiao. (2020). Mycoviruses of Colletotrichum spp.: a review. Journal of Southern Agriculture, 51(1), 123-132. Doi:10.3969/j.issn.2095-1191.2020.01.016.

Xie, J., Wei, D., Jiang, D., Fu, Y., Li, G., Ghabrial, S., & Peng, Y. (2006). Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. The Journal of General Virology, 87(Pt 1), 241–249. https://doi.org/10.1099/vir.0.81522-0

Xie, J., & Jiang, D. (2014). New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annual Review of Phytopathology, 52, 45-68. https://doi.org/10.1146/annurev-phyto-102313-050222

Yu, H. J., Lim, D., & Lee, H. S. (2003). Characterization of a novel single-stranded RNA mycovirus in Pleurotus ostreatus. Virology, 314(1), 9–15. https://doi.org/10.1016/S0042-6822(03)00382-9

Yudin, L. S., Cho, J. J., & Mitchell, W. C. (1986). Host range of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thrip, Cicacidae), with special reference to Leucaena glauca. Environmental Entomology, 15(6), 1292-1295(4). https://doi.org/10.1093/ee/15.6.1292

Zhang, H, Jiatao, X., Yanping, F., Jiasen, C., Zheng, Q., Zhenzhen, Z., ... & Daohong, J. (2020). A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica. Protection and Yield Enhancement. https://doi.org/10.1016/j.molp.2020.08.016

Zhong, J., Chen, D., Zhu, H.J., Gao, B.D., & Zhou, Q. (2016) Hypovirulence of Sclerotium rolfsii caused by associated RNA mycovirus. Frontier of Microbiology, 7, 1798. https://doi.org/10.3389/fmicb.2016.01798

Zhou, L., Li, X., Kotta-Loizou, I., Dong, K., Li, S., Ni, D., Hong, N., Wang, G., & Xucorresponding, W. (2021). A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. ISME Journal, 15(7), 1893–1906. https://doi.org/10.1038/s41396-021-00892-3

Downloads

Published

6. 10. 2023

Issue

Section

Review Article

How to Cite

NDIFON, E. M., & CHOFONG, G. N. (2023). Mycoviruses: trends in plant-fungus-mycovirus interactions and ‘biocontrol’ prospects in agriculture and the environment. Acta Agriculturae Slovenica, 119(3), 1–11. https://doi.org/10.14720/aas.2023.119.3.2971

Similar Articles

1-10 of 556

You may also start an advanced similarity search for this article.