Evaluation of salinity tolerance in seedlings of Iris × germanica L. hybrids
DOI:
https://doi.org/10.14720/aas.2025.121.1.16550Keywords:
peroxidase enzyme, carotenoid, proline content, chlorophyll contentAbstract
Salinity is an abiotic stress that primarily impacts plant development and agricultural productivity worldwide and typically occurs in arid and semi-arid areas. Less research has been done on the impact of salt irrigation on the growth and development of ornamental plants, particularly bulbous plants. In order to identify salt-tolerant Iris germanica L. genotypes, an experiment was carried out with four NaCl levels (4 as control, 6, 8, and 12 dS/m). The variation among genotypes caused different responses to salinity conditions. The results showed that the morphological, physiological, and biochemical characteristics of OPRC23 genotypes were superior to those of other genotypes. The highest peroxidase enzyme activity was observed at an 8 dS/m salinity level. The highest content of Chlorophyll a, b, and carotenoid was obtained at a salinity level of 6 dS/m (NaCl). The OPRC54 genotype had the highest levels of chlorophyll a, b, and proline content at 12 dS/m salinity. In conclusion, different levels of salinity can expose different genotypes, which leads to the selection of specific salt tolerant genotypes.
References
Acosta-Motos, J.R., Diaz-Vivancos, P., & A´lvarez, S., et al. (2015). Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta, 1-15. https://doi.org/10.1007/s00425-015-2315-3.
Ahmad, P, Ashraf, M., Azooz, M.M., Asool, S., & Akram, N.A. (2012). Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. Journalof Plant Interaction. https://doi.org/10.1080/17429145.2012.747629.
Amir-Jani, M.R. (2010). Effect of NaCl on some physiological parameters of rice. EJBS, 3(1), 6-16.
Aroca, R., Ruiz-Lozano, J.M., & Zamarrenoamarreno Angel, M et al. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170, 47–55. https://doi.org/10.1016/j.jplph.2012.08.020.
Ayad, J.Y., Othman, Y.A., & Al Antary, T.M. (2019). Irrigation water salinity and potassium enrichment influenced growth and flower quality of Asiatic lily. Fresenius Environ Bulletin, 28(11), 8900-8905.
Azimi M.H. (2015). An introduction of genetic inbreeding and new cultivars production of Gladiolus grandiflorus. Technical J Publications Organization Study. Education, Promotion and Agriculture, 1-22.
Azimi, M.H., Jozghasemi, S., & Barba-Gonzalez, R. (2018). Multivariate analysis of morphological characteristics in Iris germanica hybrids. Euphytica 214(161), 1-11. https://doi.org/10.1007/s10681-018-2239-7.
Azimi, M.H., Jozghasemi, S., & Edrisi, B. (2017). Diversity induction in flower color of Iris germanica through hybridization. Journalof Iranian Society for Ornamental plants, 92, 22-91.
Azimi, M.H., Sadeghyan, S.Y., Beyramizadeh, E., & Kalate-Jari, S., Tahernezhad, Z. (2010). Study of genetic variation among Iranian irises species using morphological characteristics. Iranian Journal of Horticultural Science and Technology, 11(1), 71-86.
Bano, S., Ashraf, M., & Akram, N.A. (2013) Salt stress regulates enzymatic and non-enzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). Journal of Plant Interaction, 9(1), 324–329. https://doi.org/10.1080/17429145.2013.832426.
Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline water stress studies. Plant Soil, 39, 205-207.
Bayat, H., Alirazaie, M., Neamati, H., & Abdollahisaadabad, A. (2013). Effect of silicon on growth and ornamental traits of salt-stressed calendula (Calendula officinalis L.). Journal of Ornamental Plants 3(4), 207-214.
Chen, Q., Tao, S., Bi, X., Xu, X., Wang, L., & Li, X. (2013). Research progress in physiological and molecular biology mechanism of drought resistance in rice. American Journal of. Molecular Biology, 3(2), 102-107.
Cirillo, C., Rouphael, Y., & Caputo, R. et al. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. The Journal of Horticultura Science and Biotechnology, 91(1), 14–22. http://dx.doi.org/10.1080/14620316.2015.1110988.
Dlamini, B.B., Wahome, P.K., Masarirambi, M.T., Oseni, T.O., & Nxumalo, K.A. (2019). Effects of Salinity on the Vegetative Growth of Tuberose (Polianthes tuberosa L.). Journal of Horticultural Science of Ornamental Plants, 11(2), 144-151. https://doi.org/10.5829/idosi.jhsop.2019.144.151.
Esmaeili, S., & Salehi, H. (2016). Kentucky bluegrass (Poa pratensis L.) silicon-treated turfgrass tolerance to short- and long-term salinity condition. Advances in Horticultural Science, 30(2), 87-94.
Fatma M, Masood A, Per TS, Rasheed F, & Khan NA (2016) Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. J Crop, 4, 153-161.
García-Caparrós, P., & Lao, M.T. (2018). The effects of salt stress on ornamental plants and integrative cultivation Practices. Scientia Horticulturae 240, 430–439. http://dx.doi.org/10.1016/j.scienta.2016.01.031.
García-Caparrós, P., Llanderal, A., & Pestana M et al. (2016) Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Scientia Horticulturae 201, 84–91.
Go´mez-Bellot, M.J., Alvarez, S., & Castillo, M et al. (2013). Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. Journal of Plant Research, 126, 567–576. https://doi.org/10.1007/s10265-012-0545-z.
Guan, G., Wang, Y., Cheng, H., Jiang, Z., & Fei, J. (2015) Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata. Ecotoxicology, 24(7), 1668-1676.
Hasanuzzaman, M., Nahar, K., & Fujlta, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages, In: Ahmad P, Azooz M.M, Prasad M.N.V, (Eds.), Ecophysiology and responses of plants under salt stress. Springer, 25-87. New York.
Hussain, S., Khan, F., Cao, W., Wu, L., & Geng, M. (2016). Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Frontiers in Plant Science, 7(439), 1-17.
Jozghasemi, S., Rrabiei, V., Soleymani, A., & Khaligi, A. (2015). Evaluation of the pigments concentration in the iris species native to Iran. J.Biodiversity. Environmental Science, 6(1), 557-561.
Juon, M., Rivero, R.M., Romero, L., & Ruiz, J.M. (2005). Evalution of some nutritional and biochemical indicator selecting salt-resistant tomato cultivars. Journal of Environment and Experimenalt Botany, 193-201.
Kaya, C., Ashraf, M., & Sonmez, O. et al. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1–6. https://doi.org/10.1016/j.scienta.2009.01.001.
Kaya, C., Sonmez, O., & Aydemir, S. et al. (2013). Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). Journal of Plant Interaction, 8, 234-241.
Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Journal of Plant Biology, 50, 227-231.
Muller, T., Luttchwager, D., & Lentzsch, P. (2010). Recovery from drought stress at the shooting stage in oil seed rape (Brassica napus L.). Journal of Agronomyand Crop Science, 196(2), 81-89.
Munns, R., & Tester, M. (2008). Mechanism of salinity tolerance. The Annual Review of Plant Biology, 59, 651-681.
Naseri Moghadam, A., Bayat, H., Aminifard, M.H., & Moradinezhad, F. (2019). Effect of Drought and Salinity Stress on Growth, Flowering and Biochemical Characteristics of Narsicuss tazetta L. Journal of Horticultural Science, 33(3), 451-466.
Naseri Moghadam, A., Bayat, H., Aminifard, M.H., & Moradinezhad, F. (2020). Effects of drought and salinity stresses on some morphological and physiological characteristics of Narcissus tazetta L. flower. Journal of Horticultural Science, 51(1), 79-90. https://doi.org/ 10.22059/ijhs.2018.264753.1507.
Nazemi Rafi, Z., Kazemi, F., & Tehranifar, A. (2019). Morpho-physiological and biochemical responses of four ornamental herbaceous species to water stress. Acta Physiologiae Plantarum, 41, 6-13.
Noctor, G., Mhamdi, A., & Foyer, C.H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164, 1636–1648. https://doi.org/10. 1104/pp.113.233478.
Noreen, Z., & Ashraf, M. (2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environmental and Experimental Botany, 67, 395-402.
Noreen, Z., Ashraf, M., & Akram, N.A. (2010). Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). Journaof Agronomy and Crop Science, 196, 273-285.
Oliveira, F.I.F., JF de Medeiros, W., F. de Lacerda, C.L.R., Neves, A.R., & Oliveira, D. (2017). Saline water irrigation managements on growth of ornamental plants affecting their morphology or even reducing plant survival. Revista Brasileira de Engenharia Agricola e Ambiental, 21(11), 739-745. http://dx.doi.org/10.1590/1807-1929/agriambi.
Porcel, R., Aroca, R., & Ruiz-Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy dor Sustainable Development, 32, 181–200. https://doi.org/10. 1007/s13593-011-0029-x.
Rahdari, P., & Hoseini, S.M. (2012). Salinity stress: a review. Technical Journal of Engineering. Applied Science, 1(3), 63-66.
Rahemi, M., Karimi, S., Sedaghat, S., & Rostami, A.A. (2017). Physiological responses of olive cultivars to salinity stress. Advances in Horticultural Science, 31(1), 53-59.
Rostami, M., Mohammad-Parast, B., & Golfam, R. (2015). The effect of different salinity levels on some physiological characteristics of Crocus sativus L. Journal of Saffron Agriculture and Technology, 3(3), 173-179.
Ruiz-Lozano, J.M., Porcel, R., Azcon, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants. New challenges in physiological and molecular studies. Journal of Experi Botany, 63, 33-44.
Saeed, R., Mirza, S., & Ahmad, R. (2014). Electrolyte leakage and relative water content as affected by organic mulch in okra plant (Abelmoschus esculentus (L.) Moench) grown under salinity. Fuuast Journal of Biology, 4(2), 221-227.
Saki, R. (2014). The effect of salinity on some annual ornamental plants. Master’s thesis. Tabriz university of Iran.
Salachna, P., Zawadzińska, A., & Podsiadło, C. (2016). West Pomeranian University of Technology in Szczecin. 2016. Response of Ornithogalum saundersiae bak. to salinity stress. Acta Scie Poland Hortor Cultus, 15(1), 123-134.
Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., & Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris. Environmental and Experimental Botany, 52, 131-138.
Sarvandi, S., Ehtesham Nia, A., Rezaei Nejad, A., & Azimi, M.H. (2020). Morpho-Physiological Responses of Some Iris Cultivars under Drought and Salinity Stresses. Journal of Agriculture Science andTechnology, 22(2), 535-546.
Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L., Viegas, R.A., & Silveira, J.A.G. (2010). Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environmnet, 74, 1130-1137.
Soheili-Movahed, S., Esmaili, M.A., Jabbari, F., & Fooladi, A. (2017). Evaluation of Yield and Yield Components of Some Pinto bean (Phaseolus vulgaris L.) Genotypes under Late Season Water Deficit Conditions. Journal of Agroecology, 9(2), 433-444.
Tambussi, E.A., Noques, S., & Araus, J.L. (2005). Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 221, 446-458.
Tiwari, J.K., Munshi, A.D., Kumar, R., Pandey, R.N., Arora, A., Bhat, J.S., & Sureja, A.K. (2010). Effect of salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phenols and Chlorophyll content. Acta Physiologiae Plantarum, 32, 103-114.
Tuna, A.L., Kaya, C., Altunlu, H., & Ashraf, M. (2013). Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress. Australian Journal of Crop Science, 7(8), 1181-1188.
Ulczycka-Walorska, M., Krzyminska, A., Bandursk, H., & Bocianowski, J. (2020). Response of Hyacinthus orientalis L. to salinity caused by increased concentrations of sodium chlorophylloride in the soil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 398-405. https://doi.org/10.15835/nbhOPRC548111748.
Veatch-Blohm, M.E., Roche, B.M., & Sweeney, T. (2019). The effect of bulb weight on salinity tolerance of three common Narcissus cultivars. Scientia Horticulturae, 248, 62–69.
Veatch-Blohm, M.E., & Morningstar, L. (2011). Calla lily growth and development under saline irrigation. Horticultural Science, 46(2), 222-227.
Wang, W.Y., Yan, X.F., Jian, Y., Qu, B., & Xu, Y.F. (2012) Effects of salt stress on water content and photosynthetic characteristics in Iris acteal var. Chinensis seedlings. Middle-East Journal of Scientific Research, 12(1), 70-74.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mohammad Hossein AZIMI, Asghar EBRAHIMI, Mohammadreza SHAFIEI, Zeinab HAMZEHEI, Pegah SAYYAD-AMIN

This work is licensed under a Creative Commons Attribution 4.0 International License.