Do people save energy for agricultural production and produce more benefits through shift crop cultivation? – An energy balance analyses from paddy rice and upland crop production in Hau Giang province, Vietnam

Authors

  • Le Liem Can Tho University https://orcid.org/0000-0002-9395-9346
  • Ngoc Nhan Pham School of Economics and Law, Tra Vinh University, Tra Vinh Province, Vietnam
  • Thu Hien Nguyen Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade, Vietnam

DOI:

https://doi.org/10.14720/aas.2024.120.4.16574

Keywords:

Black sesame, corn, energy balance, mungbean, paddy rice

Abstract

Agricultural energy analysis and better energy use efficiency will contribute to sustainable development adapt to climate change and ensure maintainable production. A case study from Hau Giang province agriculture energy was conducted on the comparison between the cultivation of paddy rice (PR) and upland crops, including corn, mungbean (MB), and black sesame (BS). The life cycle assessment methodology was used to estimate energy consumption and biomass energy production. Based on input-output energy inventoried results, the energy use efficiency, energy productivity, specific energy, and net energy were analysed. Selected crops require 39,501 – 59,638 MJ ha–1 crop–1 that is higher than energy providing for PR. Crop cultivation requires a large amount of energy from fossil fuels and electricity (12,946 – 34,375 MJ ha–1 crop–1). Biomass production achieves 779,670 MJ ha–1 crop–1 through corn cultivation, follow by rice farming (198,723 MJ ha–1 crop–1), BS and BS production (103,292 and 63,012 MJ ha–1 crop–1, respectively). Corn and PR reach the best energy analysis index because of their high biomass production. This study’s results underline the benefit of net energy from agricultural systems case study in Hau Giang province (19,380 – 720,032 MJ ha–1 crop–1).

References

Aghaalikhani, M., Kazemi-Poshtmasari, H., & Habibzadeh, F. (2013). Energy use pattern in rice production: A case study from Mazandaran province, Iran. Energy Conversion and Management, 69, 157–162. https://doi.org/10.1016/j.enconman.2013.01.034

Akpinar, M. G., Ozkan, B., Sayin, C., & Fert, C. (2009). An input-output energy analysis on main and double cropping sesame production. Journal of Food, Agriculture and Environment, 7(3–4), 464–467.

Ali, Q., Yaseen, M. R., & Khan, M. T. I. (2019). Energy budgeting and greenhouse gas emission in cucumber under tunnel farming in Punjab, Pakistan. Scientia Horticulturae, 250, 168–173. https://doi.org/10.1016/j.scienta.2019.02.045

Ali, S., & Jan, A. (2014). Sowing dates and nitrogen levels effect on yield attributes of sesame cultivars. Sarhad Journal of Agriculture, 30(2), 203–209.

Banaeian, N., Omid, M., & Ahmadi, H. (2011). Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management, 52(2), 1020–1025. https://doi.org/10.1016/j.enconman.2010.08.030

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046

Camargo, G. G. T., Ryan, M. R., & Richard, T. L. (2013). Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. BioScience, 63(4), 263–273. https://doi.org/10.1525/bio.2013.63.4.6

Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8–9), 1243–1256. https://doi.org/10.1016/j.energy.2005.05.021

Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management, 46(4), 655–666. https://doi.org/10.1016/j.enconman.2004.04.008

Chaudhary, V. P., Singh, K. K., Pratibha, G., Bhattacharyya, R., Shamim, M., Srinivas, I., & Patel, A. (2017). Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation. Energy, 130, 307–317. https://doi.org/10.1016/j.energy.2017.04.131

Coltro, L., Marton, L. F. M., Pilecco, F. P., Pilecco, A. C., & Mattei, L. F. (2017). Environmental profile of rice production in Southern Brazil: A comparison between irrigated and subsurface drip irrigated cropping systems. Journal of Cleaner Production, 153, 491–505. https://doi.org/10.1016/j.jclepro.2016.09.207

Del Borghi, A., Tacchino, V., Moreschi, L., Matarazzo, A., Gallo, M., & Arellano Vazquez, D. (2022). Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment. Ecological Indicators, 140(May), 109015. https://doi.org/10.1016/j.ecolind.2022.109015

Elbasiouny, H., & Elbehiry, F. (2020). Rice production in Egypt: The challenges of climate change and water deficiency. Climate Change Impacts on Agriculture and Food Security in Egypt: Land and Water Resources—Smart Farming—Livestock, Fishery, and Aquaculture, 295–319.

Elsoragaby, S., Yahya, A., Mahadi, M. R., Nawi, N. M., & Mairghany, M. (2019a). Energy utilization in major crop cultivation. Energy, 173, 1285–1303. https://doi.org/10.1016/j.energy.2019.01.142

Elsoragaby, S., Yahya, A., Mahadi, M. R., Nawi, N. M., & Mairghany, M. (2019b). Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation. Energy, 189, 116160. https://doi.org/10.1016/j.energy.2019.116160

General Statistics Office of Viet Nam. (2021). Press release of socio-economic situation in the fourth quarter and the year 2021. https://www.gso.gov.vn/en/data-and-statistics/2022/01/press-release-socio-economic- situation-in-the-fourth-quarter-and-2021/

General Statistics Office of Viet Nam. (2022). Socio-Economic Situation - The First Quater of 2022. https://www.gso.gov.vn/en/data-and-statistics/2022/04/infographic-social-economic-situation-in-the-first-quarter-of-2022/

Ghasemi-Mobtaker, H., Kaab, A., & Rafiee, S. (2020). Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy, 193, 116768. https://doi.org/10.1016/j.energy.2019.116768

Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., Sanjani, S., Anvarkhah, S., & Aghel, H. (2011). A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied Energy, 88(1), 283–288. https://doi.org/10.1016/j.apenergy.2010.04.028

Hau Giang Department of Science and Technology. (2022). Results of Surface Water Quality Index (VN_WQI) Period 4 of the Year 2022 (from Jun to July, 2022). https://skhcn.haugiang.gov.vn/en/chi-tiet/-/tin-tuc/KET-QUA-CHI-SO-CHAT-LUONG-NUOC-MAT--VN_WQI--OT-4-NAM-2022--tu-ngay-6-7-7-2022-22964. In Vietnamese

Hau Giang People Committee. (2022). Synthesis report: Hau Giang Province Planning for 2021 - 2030 and a Vision to 2050. https://haugiang.gov.vn/documents/327637/1284216/221013- Hậu Giang_Báo cáo cuối kỳ (tổng hợp)-V14sent.pdf_20221018104926.pdf/f3e7b2ab-179d-b6d3-b9cf-f1cc292c5f9c. In Vietnamese

Heidari, M. D., & Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1), 220–225. https://doi.org/10.1016/j.energy.2010.10.048

Honorato-Salazar, J. A., & Sadhukhan, J. (2020). Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food and Bioproducts Processing, 119, 1–19. https://doi.org/10.1016/j.fbp.2019.10.005

Iriarte, A., Rieradevall, J., & Gabarrell, X. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production, 18(4), 336–345. https://doi.org/10.1016/j.jclepro.2009.11.004

Japan Environmental Management Association for Industry - JEMAI. (2014). The Multiple interface Life Cycle Assessment (MiLCA) software (2.3). (Toray Industries incorporated and Japan Environmental Management Association for Industry (JEMAI), Tokyo, Japan.

Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. wing. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of the Total Environment, 664, 1005–1019. https://doi.org/10.1016/j.scitotenv.2019.02.004

Kaur, N., Vashist, K. K., & Brar, A. S. (2021). Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes. Energy, 216, 119286. https://doi.org/10.1016/j.energy.2020.119286

Kazemi, H., Kamkar, B., Lakzaei, S., Badsar, M., & Shahbyki, M. (2015). Energy flow analysis for rice production in different geographical regions of Iran. Energy, 84, 390–396. https://doi.org/10.1016/j.energy.2015.03.005

Kazemi, H., & Zardari, S. (2020). Energy analysis and greenhouse gas emission from strawberry production under two irrigation systems. Walailak Journal of Science and Technology, 17(1), 1–10. https://doi.org/10.48048/wjst.2020.2436

Knápek, J., Králík, T., Vávrová, K., Valentová, M., Horák, M., & Outrata, D. (2021). Policy implications of competition between conventional and energy crops. Renewable and Sustainable Energy Reviews, 151, 111618.

Kumar, N., Chhokar, R. S., Meena, R. P., Kharub, A. S., Gill, S. C., Tripathi, S. C., Gupta, O. P., Mangrauthia, S. K., Sundaram, R. M., Sawant, C. P., Gupta, A., Naorem, A., Kumar, M., & Singh, G. P. (2022). Challenges and opportunities in productivity and sustainability of rice cultivation system: A critical review in Indian perspective. Cereal Research Communications, 50(4), 573–601. https://doi.org/10.1007/s42976-021-00214-5

Kumar, R., Sarkar, B., Bhatt, B. P., Mali, S. S., Mondal, S., Mishra, J. S., Jat, R. K., Meena, R. S., Anurag, A. P., & Raman, R. K. (2021). Comparative assessment of energy flow, carbon auditing and eco-efficiency of diverse tillage systems for cleaner and sustainable crop production in eastern India. Journal of Cleaner Production, 293, 126162. https://doi.org/10.1016/j.jclepro.2021.126162

Li, X., & Siddique, K. H. M. (2020). Future smart food: Harnessing the potential of neglected and underutilized species for zero hunger. Maternal and Child Nutrition, 16(S3), 1–22. https://doi.org/10.1111/mcn.13008

Liem, L. T. T., & Phuoc, N. T. K. (2021). Research on energy consumption through agricultural inputs usage and financial efficiency of leafy cultivation system ivegetablesn, My Thuan commune, Hon Dat district, Kien Giang province, Vietnam. Can Tho University Journal of Science, 57(Environment and Climate change), 138-147. In Vietnamese. https://doi.org/10.22144/ctu.jsi.2021.057

Lotfi, B., Maleki, A., Mirzaei Heydari, M., Rostaminiya, M., & Babaei, F. (2021). The effect of different tillage systems, nitrogen fertilizer and mycorrhiza on mung bean (Vigna radiata) production and energy indices. Communications in Soil Science and Plant Analysis, 52(4), 416–428. https://doi.org/10.1080/00103624.2020.1862145

Nandan, R., Poonia, S. P., Singh, S. S., Nath, C. P., Kumar, V., Malik, R. K., McDonald, A., & Hazra, K. K. (2021). Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environmental Science and Pollution Research, 28(1), 246–261. https://doi.org/10.1007/s11356-020-10395-x

Nguyen, V. H., Stuart, A. M., Nguyen, T. M. P., Pham, T. M. H., Nguyen, N. P. T., Pame, A. R. P., Sander, B. O., Gummert, M., & Singleton, G. R. (2022). An assessment of irrigated rice cultivation with different crop establishment practices in Vietnam. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-021-04362-w

Ogino, A., Van Thu, N., Hosen, Y., Izumi, T., Suzuki, T., Sakai, T., Ando, S., Osada, T., & Kawashima, T. (2021). Environmental impacts of a rice-beef-biogas integrated system in the Mekong Delta, Vietnam evaluated by life cycle assessment. Journal of Environmental Management, 294(December 2020), 112900. https://doi.org/10.1016/j.jenvman.2021.112900

Ozkan, B., Ceylan, R. F., & Kizilay, H. (2011). Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production. Renewable Energy, 36(5), 1639–1644. https://doi.org/10.1016/j.renene.2010.11.022

Paramesh, V., Parajuli, R., Chakurkar, E. B., Sreekanth, G. B., Kumar, H. B. C., Gokuldas, P. P., Mahajan, G. R., Manohara, K. K., Viswanatha, R. K., & Ravisankar, N. (2019). Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy, 188, 116101. https://doi.org/10.1016/j.energy.2019.116101

Parihar, C. M., Jat, S. L., Singh, A. K., Majumdar, K., Jat, M. L., Saharawat, Y. S., Pradhan, S., & Kuri, B. R. (2017). Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem. Energy, 119, 245–256. https://doi.org/10.1016/j.energy.2016.12.068

Purohit, P. (2009). Economic potential of biomass gasification projects under clean development mechanism in India. Journal of Cleaner Production, 17(2), 181–193. https://doi.org/10.1016/j.jclepro.2008.04.004

Rajaeifar, M. A., Akram, A., Ghobadian, B., Rafiee, S., & Heidari, M. D. (2014). Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy, 66, 139–149. https://doi.org/10.1016/j.energy.2013.12.059

Reddy, K. S., Kumar, M., Maruthi, V., Umesha, B., Vijayalaxmi, & Nageswar Rao, C. V. K. (2015). Dynamics of well irrigation systems and CO2 emissions in different agroecosystems of South Central India. Current Science, 108(11), 2063–2070. https://doi.org/10.18520/cs/v108/i11/2063-2070

Ruviaro, C. F., Gianezini, M., Brandão, F. S., Winck, C. A., & Dewes, H. (2012). Life cycle assessment in Brazilian agriculture facing worldwide trends. Journal of Cleaner Production, 28, 9–24. https://doi.org/10.1016/j.jclepro.2011.10.015

Sajjakulnukit, B., Yingyuad, R., Maneekhao, V., Pongnarintasut, V., Bhattacharya, S. C., & Abdul Salam, P. (2005). Assessment of sustainable energy potential of non-plantation biomass resources in Thailand. Biomass and Bioenergy, 29(3), 214–224. https://doi.org/10.1016/j.biombioe.2005.03.009

Soni, P., Sinha, R., & Perret, S. R. (2018). Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Reports, 4, 554–564. https://doi.org/10.1016/j.egyr.2018.09.001

Soni, P., Taewichit, C., & Salokhe, V. M. (2013). Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agricultural Systems, 116, 25–36. https://doi.org/10.1016/j.agsy.2012.12.006

The Vietnam National Assembly. (2010). Law on Economical And Efficient Use of Energy. In Vietnamese.

Truong, T. T. A., Fry, J., Van Hoang, P., & Ha, H. H. (2017). Comparative energy and economic analyses of conventional and system of rice intensification (SRI) methods of rice production in Thai Nguyen Province, Vietnam. Paddy and Water Environment, 15(4), 931–941. https://doi.org/10.1007/s10333-017-0603-1

Vietnam Ministry of Resources and Environment. (2019). Decision of Minister of Resources and Environment Ministry dated on 12 November, 2019 for promulgating the “Technical guidance on calculating and publishing Vietnam Water Quality Index (VN_WQI).” https://cem.gov.vn/storage/news_file_attach/QD 1460 TCMT ngay 12.11.2019 WQI.pdf. In Vietnamese

Vietnamese Ministry of Agriculture and Rural Development. (2018). Circular on Guidelines for Energy Saving and Efficient Use in Agricultural Production, No. 07/VBHN-BNNPTNT, dated on 13/6/2018. In Vietnamese.

Wang, X., Yang, L., Steinberger, Y., Liu, Z., Liao, S., & Xie, G. (2013). Field crop residue estimate and availability for biofuel production in China. Renewable and Sustainable Energy Reviews, 27(2), 864–875. https://doi.org/10.1016/j.rser.2013.07.005

Yadav, G. S., Lal, R., Meena, R. S., Datta, M., Babu, S., Das, A., Layek, J., & Saha, P. (2017). Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. Journal of Cleaner Production, 158(September 2015), 29–37. https://doi.org/10.1016/j.jclepro.2017.04.170

Yousefi, M., Damghani, A. M., & Khoramivafa, M. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of The Total Environment, 493, 330–335. https://doi.org/10.1016/J.SCITOTENV.2014.06.004

Downloads

Published

13. 12. 2024

Issue

Section

Original Scientific Article

How to Cite

Liem, L., Pham, N. N., & Nguyen, T. H. (2024). Do people save energy for agricultural production and produce more benefits through shift crop cultivation? – An energy balance analyses from paddy rice and upland crop production in Hau Giang province, Vietnam. Acta Agriculturae Slovenica, 120(4), 1‒14. https://doi.org/10.14720/aas.2024.120.4.16574