Soil water dynamics and olive yield (Olea europaea L.) under different surface drip irrigation treatments in northern Mediterranean

Authors

  • Matic NOČ University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Ljubljana
  • Urša PEČAN University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Ljubljana
  • Marina PINTAR University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Ljubljana
  • Maja PODGORNIK Science and Research Centre Koper, Institute for Oliveculture, Koper

DOI:

https://doi.org/10.14720/aas.2024.120.2.17110

Keywords:

diviner, evapotranspiration, irrigation management, olive, soil depths, volumetric soil water content

Abstract

The use of modern irrigation systems and monitoring of soil water status can help improve crop performance and water use efficiency. The influence of different irrigation treatments on soil water content dynamics and olive oil yield was studied over two growing seasons using a surface drip irrigation system in an olive grove in northern Mediterranean climate. Irrigation treatments included optimal irrigation, sustained deficit irrigation (33 % of optimal irrigation), and rainfed treatment. Based on the water applied, we calculated the percentage of replenished estimated evapotranspiration (ETc*) for each treatment using the Penman-Monteith method. Soil water content dynamics were monitored with capacitive probes at five depths (10 to 50 cm). The increase in soil water content at a depth of 30 to 50 cm, which was only achieved with optimal irrigation, resulted in a significantly higher olive oil yield. In contrast, deficit irrigation, despite the addition of water, did not lead to an increase in soil water in the layers below 30 cm, so that the yield was equal to that of rainfed treatment. In irrigated olive groves, it is beneficial to monitor the water content of the soil at several depths to ensure that a sufficient amount of water has been applied.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration —guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization, Rome.

Allen, R. G., Clemmens, A. J., Burt, C. M., Solomon. K., & O’Halloran. T. (2005). Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 131, 24–36. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(24).

Arampatzis, G., Hatzigiannakis, E., Pisinaras, V., Kourgialas, N., Psarras, G., Kinigopoulou, V., Panagopoulos, A., & Koubouris, G. (2018). Soil water content and olive tree yield responses to soil management, irrigation, and precipitation in a hilly Mediterranean area. Journal of Water and Climate Change, 9, 672–678. https://doi.org/10.2166/wcc.2018.224.

ARSO, 2022. Agencija RS za okolje. Slovenian Environmental Agency. Observed and measured meteorological data across Slovenia. Accessed October 26, 2022. http://meteo.arso.gov.si/met/sl/.

Bandelj, D., Jakše, J., Javornik, B. (2004). Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica, 136, 93–102. https://doi.org/10.1023/B:EUPH.0000019552.42066.10.

Bonachela, S., Orgaz, F., Villalobos, F. J., & Fereres, E. (2001). Soil evaporation from drip-irrigated olive orchards. Irrigation Science, 20, 65–71. https://doi.org/10.1007/s002710000030.

Carr, M. K. V. (2013). The water relations and irrigation requirements of olive (Olea europaea L.): A review. Experimental Agriculture, 49, 597–639. https://doi.org/10.1017/S0014479713000276.

Caruso, G., Rapoport, H. F., & Gucci, R. (2013). Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrigation Science, 31, 37–47. https://doi.org/10.1007/s00271-011-0286-0.

Conesa, M. R., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2021). Soil-based automated irrigation for a nectarine orchard in two water availability scenarios. Irrigation Science, 39, 421–439. https://doi.org/10.1007/s00271-021-00736-0.

Cvejić, R., Černič-Istenič, M., Honzak, L., Pečan, U., Železnikar, Š., & Pintar, M. (2020). Farmers try to improve their irrigation practices by using daily irrigation recommendations – The Vipava valley case, Slovenia. Agronomy, 10, 1238. https://doi.org/10.3390/agronomy10091238.

Dag, A., Ben-Gal, A., Yermiyahu, U., Basheer, L., Nir, Y., Kerem, Z. (2008). The effect of irrigation level and harvest mechanization on virgin olive oil quality in a traditional rain-fed ‚Souri‘ olive orchard. Journal of the Science of Food and Agriculture, 88, 1524–1528. https://doi.org/10.1002/jsfa.3243.

D’Andria, R., Lavini, A., Morelli, G., Sebastiani, L., & Tognetti, R. (2009). Physiological and productive responses of Olea europaea L. cultivars Frantoio and Leccino to a regulated deficit irrigation regime. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 143, 222–231. https://doi.org/10.1080/11263500802710085.

Datta, S., Taghvaeian, S., & Stivers, J. (2017). Understanding Soil Water Content and Thresholds for Irrigation Management. Oklahoma Cooperative Extension Service: Stillwater, OK, USA. https://extension.okstate.edu/fact-sheets/print-publications/bae/understanding-soil-water-content-and-thresholds-for-irrigation-management-bae-1537.pdf.

de Jong, R., & Bootsma, A. (1996). Review of recent developments in soil water simulation models. Canadian Journal of Soil Science, 76(3), 263–273. https://doi.org/10.4141/cjss96-033.

Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58, 147–159. https://doi.org/10.1093/jxb/erl165.

Fernandes-Silva, A. A., Ferreira, T. C., Correia, C. M., Malheiro, A. C., & Villalobos, F. J. (2010). Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant and Soil, 333, 35–47. https://doi.org/10.1007/s11104-010-0294-5.

Fernández García, I., Lecina, S., Ruiz-Sánchez, M. C., Vera, J., Conejero, W., Conesa, M.R., Domínguez, A., Pardo, J. J., Léllis, B. C., & Montesinos, P. (2020). Trends and challenges in irrigation scheduling in the semi-arid area of Spain. Water, 12, 785. https://doi.org/0.3390/w12030785.

Gómez-Rico, A., Salvador, M. D., Moriana, A., Pérez, D., Olmedilla, N., Ribas, F., Fregapane, G. (2007). Influence of different irrigation strategies in a traditional ‘Cornicabra’ olive orchard on virgin olive oil composition and quality. Food Chemistry, 100, 568–578. https://doi.org/10.1016/j.foodchem.2005.09.075.

Martínez, J., & Reca, J. (2014). Water use efficiency of surface drip irrigation versus an alternative subsurface drip irrigation method. Journal of Irrigation and Drainage Engineering, 140, 04014030. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000745.

Martínez-Gimeno, M. A., Bonet, L., Provenzano, G., Badal, E., Intrigliolo, D. S., & Ballester, C. (2018). Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agricultural Water Management, 206, 209–216. https://doi.org/10.1016/j.agwat.2018.05.011.

Matthias, A. D., Salehi, R., & Warrick, A. W. (1986). Bare soil evaporation near a surface point-source emitter. Agricultural Water Management, 11, 257–277. https://doi.org/10.1016/0378-3774(86)90043-0.

MKGP. 2024. Ministrstvo za kmetijstvo, gozdarstvo in prehrano. Oljkarstvo: Stanje oljkarstva v Sloveniji. https://www.gov.si/teme/oljkarstvo/ (8. April 2024)

Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131. https://doi.org/10.1016/j.compag.2016.04.003.

Palomo, M. J., Moreno, F., Fernandez, J. E., Diaz-Espejo, A., & Giron, I. F. (2002). Determining water consumption in olive orchards using the water balance approach. Agricultural Water Management, 55(1), 15–35. https://doi.org/10.1016/S0378-3774(01)00182-2.

Pastor, M., & Orgaz, F. (1994). Los programas de recorte de riego en olivar. Agricultura, 746, 768–776.

Podgornik, M., Pintar, M., Bučar Miklavčič, M., & Bandelj, D. (2017). Different quantities of applied water on Olea europaea L. cultivated under humid conditions. Journal of Irrigation and Drainage Engineering, 143, 05017004. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001217.

Podgornik, M., Bandelj, D., Bučar-Miklavčič, M., Hladnik, M., Bešter, E., Valenčič, V., … Butinar, B. (2018). Effects of extreme drought on the vegetative and productive behavior of olive ‚Istrska belica‘. V: Perica S (ED.). Proceedings of the VIIIth International Olive Symposium: Split, Croatia, October 10-14, 2016, Acta horticulturae, Leuven, Belgium: ISHS, 2018, 63–68. https://doi.org/10.17660/ActaHortic.2018.1199.10.

Podgornik, M., Fantinič, J., Bučar-Miklavčič, M., Valenčič, V., Butinar, B., Vodnik, D., Gramc, H., Kastelec, D., Ferlan, M., Pintar, M. (2022). Oljka, sušne razmere, tla in deficitno namakanje. ZRS Koper, Inštitut za oljkarstvo, Annales ZRS. https://doi.org/10.35469/978-961-7058-87-1.

Rallo, G., Provenzano, G., Castellini, M., & Puig Sirera, A. (2018). Application of EMI and FDR sensors to assess the fraction of transpirable soil water over an olive grove. Water, 10, 168. https://doi.org/10.3390/w10020168.

Ratliff, L. F., Ritchie, J. T., & Cassel, D. K. (1983). Field-measured limits of soil water availability as related to laboratory-measured properties. Soil Science Society of America Journal, 47(4), 770–775. https://doi.org/10.2136/sssaj1983.03615995004700040032x.

Romero, M. P., Tovar, M. J., Girona, J., Motilva, M. J. (2002). Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea ‘Arbequina’) grown under different deficit irrigation strategies. Journal of Agricultural and Food Chemistry, 50, 5349–5354. https://doi.org/10.1021/jf020357h.

Rufat, J., Romero-Aroca, A. J., Arbonés, A., Villar, J. M., Hermoso, J. F., & Pascual, M. (2018). Mechanical harvesting and irrigation strategy responses on ‘Arbequina’ olive oil quality. HortTechnology, 28, 607–614. https://doi.org/10.21273/HORTTECH04016-18.

Rufat, J., Villar, J. M., Pascual, M., Falguera, V., & Arbonés, A. (2014). Productive and vegetative response to different irrigation and fertilization strategies of an ‘Arbequina’ olive orchard grown under super-intensive conditions. Agricultural Water Management, 144, 33–41. https://doi.org/10.1016/j.agwat.2014.05.014.

Santos, F. L. (2018). Olive water use, crop coefficient, yield, and water productivity under two deficit irrigation strategies. Agronomy, 8, 89. https://doi.org/10.3390/agronomy8060089.

Sanz-Cortés, F., Martinez-Calvo, J., Badenes, M. L., Bleiholder, H., Hack, H., Llacer, G., Meier, U. (2002). Phenological growth stages of olive trees (Olea europaea). Annals of Applied Biology, 140, 151–157. https://doi.org/10.1111/j.1744-7348.2002.tb00167.x.

SENTEK, 2009. Diviner 2000 User Guide version 1.5 Manual. Sentek Pty. Ltd.

Sušnik, A., & Matajc, I. (2013). Impact of climate changes on the agriculture drought appearance in Slovenia. http://agromet-cost.bo.ibimet.cnr.it/fileadmin/cost718/repository/andrejas.pdf.

Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2014). Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54–68. https://doi.org/10.1016/j.agwat.2014.05.019.

Tognetti, R., Morales-Sillero, A., D’Andria, R., Fernández, J. E., Lavini, A., Sebastiani, L., & Troncoso, A. (2008). Deficit irrigation and fertigation practices in olive growing: Convergences and divergences in two case studies. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 142, 138–148. https://doi.org/10.1080/11263500701872879.

Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volair, F., Boone, A., … Polcher, J. (2020). Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Science Reviews, 210, 103348. https://doi.org/10.1016/j.earscirev.2020.103348.

Valenčič, V., Podgornik, M., Bandelj, D., Bučar-Miklavčič, M., Bešter, E., Miklavčič Višnjevec, A., … Butinar, B. (2018). Influence of irrigation treatments on the yield and quality of ‚Istrska Belica‘ olive oil. V: Perica S (ED.). Proceedings of the VIIIth International Olive Symposium: Split, Croatia, October 10-14, 2016, Acta Horticulturae, Leuven, Belgium: ISHS, 2018, 471–476. https://doi.org/10.17660/ActaHortic.2018.1199.75.

Vera, J., Conejero, W., Mira-García, A. B., Conesa, M. R., & Ruiz-Sánchez, M. C. (2021). Towards irrigation automation based on dielectric soil sensors. The Journal of Horticultural Science and Biotechnology, 96, 696–707. https://doi.org/10.1080/14620316.2021.1906761.

Zeleke, K. T. (2014). Water use and root zone water dynamics of drip-irrigated olive (Olea europaea L.) under different soil water regimes. New Zealand Journal of Crop and Horticultural Science, 42(3), 217–232. https://doi.org/10.1080/01140671.2014.891527.

Zupanc, V., Podgornik, M., & Pintar, M. (2018). Water balance of coastal region in Slovenia. Acta hhydrologica Slovaca, 1(19), 11–16.

Downloads

Published

16. 07. 2024

Issue

Section

Original Scientific Article

How to Cite

NOČ, M., PEČAN, U., PINTAR, M., & PODGORNIK, M. (2024). Soil water dynamics and olive yield (Olea europaea L.) under different surface drip irrigation treatments in northern Mediterranean. Acta Agriculturae Slovenica, 120(2), 1–17. https://doi.org/10.14720/aas.2024.120.2.17110

Funding data

Most read articles by the same author(s)

1 2 > >>