Spraying macro and micro fertilizers affects positively fruit yield and quality of ‘Page’ mandarin

Authors

  • Mohsen MOHAMMAEI Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak
  • Babak VALIZADEHKAJI Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak

DOI:

https://doi.org/10.14720/aas.2024.120.2.18157

Keywords:

Iran, mandarin, spraying fertilizers, foliar fertilization, fruit yield and quality, biochemical attributes of the fruita

Abstract

In the current work, the effects of foliar application of two commercial fertilizers [CalfalB (containing calcium and boron) and Rice (containing macro- and micronutrients)] on leaf minerals, chlorophyll content, yield, and fruit quality, as well as some phytochemical characteristics of mandarins ‘Page’ was investigated for two consecutive years. The solutions were applied three times: mid-June and two more sprays at intervals of 18 days. Based on the results, leaves of fertilized mandarin plants with Rice and CalfalB accumulated higher N, P K, Ca, Mg, Zn, Mn, and Fe concentrations than unfertilized plants. Application of fertilizers, especially Rice, increased significantly the content of chlorophyll a (p < 0.001) and total chlorophyll (p = 0.0013) in the leaves. Trees fertilized with Rice showed a higher percentage of fruit yield, juice, pulp, and rind. Moreover, mandarins treated with fertilizers, especially Rice, had a higher level of TSS (total soluble solids), TSS/TA (titratable acidity), color parameters of the rind [L* (lightness), a* (redness), and b* (yellowness)], vitamin C, phenol compounds, carotenoid, and antioxidant activity. The results of our research work showed that an application of fertilizers containing macro- and microelements by spraying can considerably improve fruit yield and quality of the mandarin ‘Page’, especially in areas with poor soils.

References

Ali, E. F., Hassan, F. A., Abdel-Rahman, S. S., Siddique, K. H. (2021). Foliar application of potassium and zinc enhances the productivity and volatile oil content of damask rose (Rosa damascena Miller var. trigintipetala Dieck). Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 101–114. https://doi.org/10.24326/asphc.2021.4.9

Alipour, H. (2018). Photosynthesis properties and ion homeostasis of different pistachio cultivar seedlings in response to salinity stress. International Journal of Horticultural Science and Technology, 5, 19–29. https://doi.org/10.22059/ijhst.2018.233656.192

Almutairi, K. F., Abdel-Sattar, M., Mahdy, A. M, El-Mahrouky, M. A. 2021. Co-application of mineral and organic fertilizers under deficit irrigation improves the fruit quality of the Wonderful pomegranate. PeerJ, 9, e11328. http://doi.org/10.7717/peerj.11328

Alva, A. K., Mattos, D. Jr., Paramasivam, S., Patil, B., Dou, H. Sajwan, K. S. (2006). Potassium management for optimizing citrus production and quality. International Journal of Fruit Science, 6(1), 3–43. https://doi.org/10.1300/J492v06n01_02

Balázs, V., Helyes, L., Daood, H. G., Pék, Z., Neményi, A., Égei, M., Takács, S. (2023). Effect of fertilization level on the yield, carotenoids, and phenolic content of orange- and purple-fleshed sweet potato. Horticulturae, 9(5), 523. https://doi.org/10.3390/horticulturae9050523

Bastakoti, S., Nepal, S., Sharma, D., Shrestha, A. K. (2022). Effect of foliar application of micronutrients on growth, fruit retention and yield parameters of acid lime (Citrus aurantifolia Swingle). Cogent Food & Agriculture, 8, 2112421. https://doi.org/10.1080/23311932.2022.2112421

Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. The Journal of Food Science and Technology, 28(1), 25–30. https://doi. org/10.1016/S0023-6438 (95)80008-5

Bruulsema, T. W., Heffer, P., Welch, R. M., Çakmak, I., Moran, K. (2012). Fertilizing crops to improve human health: a scientific review volume 1: food and nutrition security. IPNI/IFA, Paris, France

Cavender, G., Liu, M., Fernandez-Salvador, J., Hobbs, D., Strik, B., Frei, B., Zhao, Y. (2019). Effect of different commercial fertilizers, harvest date, and storage time on two organically grown blackberry cultivars: Physicochemical properties, antioxidant properties, and sugar profiles. Journal of Food Quality, 1390358. https://doi.org/10.1155/2019/1390358

Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., Saccardo, F. (2006). Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Journal of Agricultural and Food Chemistry, 54(12), 4319–4325. https://doi.org/10.1021/jf0602572

FAOSTAT. 2021. http:// www. faost at. fao. Org

Fernández, V., Sotiropoulos, T., Brown, P. H. (2013). Foliar fertilization. In: Scientific Principles and Field Practices. International Fertilizer Industry Association, Paris

Gerendás, J., Führs, H. (2013). The significance of magnesium for crop quality. Plant Soil, 368, 101–128. https://doi.org/10.1007/s11104-012-1555-2

Hosseini, Y. (2018). Effect of micronutrients foliar application on yield, fruit quality and nutrients concentration in lime (Citrus aurantifolia Swingle). Plant Production Technology, 10(2), 191–205. https://doi.org/10.22084/ppt.2018.9407.1530

Ilyas, A., Ashraf, M. Y., Hussain, M., Ashraf, M., Ahmed, R., Kamal, A. (2015). Effect of micronutrients (Zn, Cu and B) on photosynthetic and fruit yield attributes of Citrus reticulata Blanco var. Kinnow. Pakistan Journal of Botany, 47(4), 1241–1247.

Jiang, N., Jin, L. F., Teixeira da Silva, J. A., Islam, M. D. Z., Gao, H. W., Liu, Y. Z., Peng, S, A. (2014). Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Scientia Horticulturae, 168, 73–80. https://doi.org/10.1016/j.scienta.2014.01.021

Khalid, S., Malik, A. U., Irfan Ullah, M., Khalid, M. S., Naseer, M. (2021). Influence of fertilizers and plant growth regulators application on physicochemical attributes of ‘Kinnow’ mandarin fruit. International Journal of Fruit Science, 21(1), 758–767. https://doi.org/10.1080/15538362.2021.1930627

Kilic, N., Burgut, A., Gündesli, M. A., Nogay, G., Ercisli, S., Kafkas, N. E., Ekiert, H., Elansary, H. O., Szopa, A. (2021). The effect of organic, inorganic fertilizers and their combinations on fruit quality parameters in strawberry. Horticulturae, 7(10), 354. https://doi.org/10.3390/horticulturae7100354

Liaquat, M., Ali, I., Ahmad, S., Malik, A. M., Ashraf, H. M. Q., Parveen, N., Tareen, M. J., Saeed, T., Shah, S. H., Zulfiqar, B. (2023). Efficiency of exogenous zinc sulfate application reduced fruit drop and improved antioxidant activity of ‘Kinnow’ mandarin fruit. Brazilian Journal of Biology, 83, e244593. https://doi.org/10.1590/1519-6984.244593

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.‎ https://doi.org/10.1016/0076-6879(87)48036-1

Liu, G. D., Jiang, C. C., Wang, Y. H., Peng, S. A., Lu, J. W. (2010). A review on effects of mineral nutrients on citrus. Chinese Journal of Soil Science, 41(6), 1518–1523. https://doi.org/10.19336/j.cnki.trtb.2010.06.044

Maity, A., Sharma, J., Sarkar, A., Basak, B. B. (2022). Zinc nutrition improves fruit yield, quality, and reduces bacterial blight disease severity in pomegranate (Punica granatum L.). Journal of Plant Nutrition, 46, 2060–2076. https://doi.org/10.1080/01904167.2022.2118610

Menino, R. (2012). Leaf Analysis in Citrus: Interpretation Tools. In: Srivastava A. (ed); Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_5

Mohammed, N., Makhoul, G., Bouissa, A. A. (2018). Effect of foliar spraying with B, Zn and Fe on flowering, fruit set and physical traits of the lemon fruits (Citrus meyeri). International Journal of Agriculture & Environmental Science, 5(2), 50–58. https://doi.org/10.14445/23942568/IJAES-V5I2P107

Mukherjee, A., Omondi, C., Hepperly, P., Seidel, R., Heller, W. (2020). Impacts of organic and conventional management on the nutritional level of vegetables. Sustainability, 12, 1–25. https://doi.org/10.3390/su12218965

Nandita, K., Kundu, M., Rani, R., Khatoon, F., Kumar, D. (2020). Foliar feeding of micronutrients: an essential tool to improve growth, yield and fruit quality of sweet orange (Citrus sinensis ‘Mosambi’ under non-traditional citrus growing track. International Journal of Current Microbiology and Applied Sciences, 9(3), 473–483. https://doi.org/10.20546/ijcmas.2020.903.055

Nielsen, S. S. (2017). Vitamin C determination by indophenol method. In: Food Analysis Laboratory Manual; Springer: Berlin/Heidelberg, Germany, pp. 143–146.

Norozi, M., ValizadehKaji, B., Karimi, R., Nikoogoftar Sedghi, M. (2019). Effects of foliar application of potassium and zinc on pistachio (Pistacia vera L.) fruit yield. International Journal of Horticultural Science and Technology, 6, 113–123. https://doi.org/10.22059 /ijhst .2019.27875 7.286

Oivukkamäki, J., Atherton, J., Xu, S., Riikonen, A., Zhang, C., Hakala, T., Honkavaara, E., Porcar-Castell, A. (2023). Investigating foliar macro- and micronutrient variation with chlorophyll fluorescence and reflectance measurements at the leaf and canopy scales in potato. Remote Sensing, 15(10), 2498. https://doi.org/10.3390/rs15102498

Reetika, G. S., Rana, M. K., Rana, Prince, Kant, G. (2018). Effect of foliar application of macro and micronutrients on fruit drop and yield of ‘Kinnow’ mandarin. International Journal of Pure and Applied Bioscience, 6(2), 1163–1169. http://dx.doi.org/10.18782/2320-7051.6510

Riahi, A., Hdider, C. (2013). Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization. Scientia Horticulturae, 151, 90–96. https://doi.org/10.1016/j.scienta.2012.12.009

Singleton. V. L., Rossi, J. A. (1965). Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

Smoleń, S. (2012). Foliar Nutrition: Current State of Knowledge and Opportunities. In: Srivastava, AK. (ed.). Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_4

Srivastava, A. K. (2012). Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3

Tanari, N., Ramegowda, S., Thottan, A., Manjunath, G. (2019). Effect of fertigation of primary nutrients on pomegranate (Punica granatum L.) fruit productivity and quality. Tropical Plant Research, 6(3), 424–432. https://doi.org/10.22271/tpr.2019.v6.i3.052

Treutter, D. (2010). Managing phenol contents in crop plants by phytochemical farming and breeding—visions and constraints. International Journal of Molecular Sciences, 11(3), 807–857. https://doi.org/10.3390/ijms11030807

Van Dang, L., Phuong Ngoc, N., Hung, N. N. (2022). Effects of foliar fertilization on nutrient uptake, yield, and fruit quality of pomelo (Citrus grandis Osbeck) grown in the Mekong delta soils. International Journal of Agronomy, 7903796. https://doi.org/10.1155/2022/7903796

Zaman, L., Shafqat, W., Sharief, N., Raza, K., Ud Din, S., Ahsan Qureshi, M., Jiskani, M. J. (2019). Effect of foliar spray of calcium carbonate and zinc sulphate on fruit quality of ‘Kinnow’ mandarin. Journal of Global Innovations in Agricultural and Social Sciences, 7(4), 157–161. https://doi.org/10.22194/JGIASS/7.875

Zhang, W., Zhang, X., Wang, Y., Zhang, N., Guo, Y., Ren, X., Zhao, Z. (2018). Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biology Open, 7(12), bio024745. doi: https://doi.org/10.1242/bio.024745

Zou, Z., Xi, W., Hu, Y., Nie, C., Zhou, Z. (2016). Antioxidant activity of citrus fruits. Food Chemistry, 196, 885–96. http://dx.doi.org/10.1016/j.foodchem.2015.09.072

Downloads

Published

16. 07. 2024

Issue

Section

Original Scientific Article

How to Cite

MOHAMMAEI, M., & VALIZADEHKAJI, B. (2024). Spraying macro and micro fertilizers affects positively fruit yield and quality of ‘Page’ mandarin. Acta Agriculturae Slovenica, 120(2), 1–11. https://doi.org/10.14720/aas.2024.120.2.18157

Funding data