Drought-induced expression of PvDERB1F and PvDREB5A with promoted antioxidant activities possibly enhanced drought stress tolerance in Common bean (Phaseolus vulgaris L.)
DOI:
https://doi.org/10.14720/aas.2024.120.4.18648Keywords:
Phaseolus vulgaris,, drought stress, DREB genes, lipid peroxidation, antioxidants, ROS scavengingAbstract
References
Aebi, H. (1974). Catalase. Methods of enzymatic analysis. Journal of Food Lipids., 2, 673–684. https://doi.org/https://doi.org/10.1016/B978-0-12-091302-2.50032-3
Alché, J. de D. (2019). A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biology, 23, 101136. https://doi.org/10.1016/J.REDOX.2019.101136
Amoah, J. N., & Seo, Y. W. (2021). Effect of progressive drought stress on physio-biochemical responses and gene expression patterns in wheat. 3 Biotech, 11(10). https://doi.org/10.1007/s13205-021-02991-6
Ansari, W. A., Atri, N., Singh, B., Kumar, P., & Pandey, S. (2018). Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica, 56(4), 1019–1030. https://doi.org/10.1007/s11099-018-0821-9
Ansari, W. A., Atri, N., Singh, B., & Pandey, S. (2017). Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biologia Plantarum, 61(2), 333–341. https://doi.org/10.1007/s10535-016-0694-3
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy, 10(6). https://doi.org/10.3390/agronomy10060817
Beebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4 MAR. https://doi.org/10.3389/fphys.2013.00035
Bhalani, H., Thankappan, R., Mishra, G. P., Sarkar, T., Bosamia, T. C., & Dobaria, J. R. (2019). Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PLoS ONE, 14(5). https://doi.org/10.1371/journal.pone.0216706
Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a Review. Annals of Botany, 91, 179–194. https://doi.org/10.1093/aob/mcf118
Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) - Model food legumes. Plant and Soil, 252(1), 55–128. https://doi.org/10.1023/A:1024146710611
Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011–1019. https://doi.org/10.1590/S1415-47572012000600016
Chen, K., Tang, W., Zhou, Y., Chen, J., Xu, Z., Ma, R., Dong, Y., Ma, Y., & Chen, M. (2022). AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Biochemistry, 170, 287–295. https://doi.org/10.1016/j.plaphy.2021.12.014
ChunJuan, D., & JinYuan, L. (2010). The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology, 10(47), 1–15.
Deeba, F., Pandey, A. K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y. K., Shirke, P. A., & Pandey, V. (2012). Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiology and Biochemistry, 53, 6–18. https://doi.org/10.1016/j.plaphy.2012.01.002
do Rego, T. F. C., Santos, M. P., Cabral, G. B., de Moura Cipriano, T., de Sousa, N. L., de Souza Neto, O. A., & Aragão, F. J. L. (2021). Expression of a DREB 5-A subgroup transcription factor gene from Ricinus communis (RcDREB1) enhanced growth, drought tolerance and pollen viability in tobacco. Plant Cell, Tissue and Organ Culture, 146(3), 493–504. https://doi.org/10.1007/s11240-021-02082-7
Dong, C., Ma, Y., Zheng, D., Wisniewski, M., & Cheng, Z. M. (2018). Meta-analysis of the effect of overexpression of dehydration-responsive element binding family genes on temperature stress tolerance and related responses. Frontiers in Plant Science, 9, 713. https://doi.org/10.3389/fpls.2018.00713
Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 33(4), 751–763. https://doi.org/10.1046/j.1365-313X.2003.01661.x
Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93–100. https://doi.org/10.1104/pp.110.166181
Ghaffari, H., Tadayon, M. R., Nadeem, M., Cheema, M., & Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41(2). https://doi.org/10.1007/s11738-019-2815-z
Gomes, M. P., Kitamura, R. S. A., Marques, R. Z., Barbato, M. L., & Zámocký, M. (2022). The role of H2O2-scavenging enzymes (ascorbate, peroxidase and catalase) in the tolerance of lemna minor to antibiotics: Implications for phytoremediation. Antioxidants, 11(1). https://doi.org/10.3390/antiox11010151
Hu, C. G., Honda, C., Kita, M., Zhang, Z., Tsuda, T., & Moriguchi, T. (2002). A simple protocol for RNA isolation from fruit trees containing high levels of polysaccharides and polyphenol compounds. Plant Molecular Biology Reporter, 20(1), 69–69. https://doi.org/10.1007/BF02801935
Kong, W., Liu, F., Zhang, C., Zhang, J., & Feng, H. (2016). Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Nature Publishing Group, 6, 35393. https://doi.org/10.1038/srep35393
Konzen, E. R., Recchia, G. H., Cassieri, F., Gomes Caldas, D. G., Berny Mier Y Teran, J. C., Gepts, P., & Tsai, S. M. (2019). DREB genes from common bean (Phaseolus vulgaris L.) show broad to specific abiotic stress responses and distinct levels of nucleotide diversity. International Journal of Genomics, https://doi.org/10.1155/2019/9520642. https://doi.org/10.1155/2019/9520642
Lin, H. H., Lin, K. H., Syu, J. Y., Tang, S. Y., & Lo, H. F. (2016). Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress. Journal of Plant Biochemistry and Biotechnology, 25(1), 87–96. https://doi.org/10.1007/s13562-015-0314-x
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262
Mangole, G., Ithuteng, M., Radikgomo, M., & Molosiwa, O. O. (2022). Challenges and opportunities in common bean production and marketing in Botswana: prospects and farmer’s perspectives. African Journal of Food, Agriculture, Nutrition and Development, 22(5). https://doi.org/10.18697/ajfand.110.20660
Moatshe-Mashiqa, O. G., Mashiqa, P. K., & Molosiwa, O. O. (2021). Proximate and mineral nutrition of common bean genotypes as influenced by harvesting time. Journal of Agricultural Science, 14(1). https://doi.org/10.5539/jas.v14n1p85
Molinari, H. B. C., Marur, C. J., Daros, E., De Campos, M. K. F., De Carvalho, J. F. R. P., Filho, J. C. B., Pereira, L. F. P., & Vieira, L. G. E. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, 130(2). https://doi.org/10.1111/j.1399-3054.2007.00909.x
Moloi, M. J., & van der Merwe, R. (2021). Drought tolerance responses in vegetable-type soybean involve a network of biochemical mechanisms at flowering and pod-filling stages. Plants, 10(1502), https:// doi.org/10.3390/plants10081502 Academic. https://doi.org/10.3390/plants10081502
Molosiwa, O. O., Pharudi, J., Seketeme, S., Mashiqa, P., & Chirwa, R. (2019). Assessing yield stability and adaptability of Andean common bean genotypes in the semi-arid environment of Botswana. African Journal of Agricultural Research, 14, 1593–1600. https://doi.org/10.5897/ajar2019.13988
Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: Facts and artifacts. Plant Physiology, 180, 1246–1250. https://doi.org/10.1104/pp.19.00405
Morsi, N. A. A., Hashem, O. S. M., El-Hady, M. A. A., Abd-Elkrem, Y. M., El-temsah, M. E., Galal, E. G., Gad, K. I., Boudiar, R., Silvar, C., El-Hendawy, S., Mansour, E., & Abdelkader, M. A. (2023). Assessing drought tolerance of newly developed tissue-cultured canola genotypes under varying irrigation regimes. Agronomy, 13(3). https://doi.org/10.3390/agronomy13030836
Moussa, H. R., & Abdel-Aziz, S. M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1(1), 519–528.
Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Update on abiotic stresses in arabidopsis and grasses transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149, 89–95. https://doi.org/10.1104/pp.108.129791
Nguyen, Q. H., Vu, L. T. K., Nguyen, L. T. N., Pham, N. T. T., Nguyen, Y. T. H., Le, S. Van, & Chu, M. H. (2019). Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55895-0
Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. In Seminars in Cell and Developmental Biology (Vol. 80, pp. 3–12). https://doi.org/10.1016/j.semcdb.2017.07.013
Pandey, H. C., Baig, M. J., Chandra, A., & Bhatt, R. K. (2010). Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. Journal of Environmental Biology, 31(4).
Pham, T. T. N., Nguyen, H. Q., Nguyen, T. N. L., Dao, X. T., Sy, D. T., Le, V. S., & Chu, H. M. (2020). Overexpression of the GmDREB2 gene increases proline accumulation and tolerance to drought stress in soybean plants. Australian Journal of Crop Science, 14(3), 495–503. https://doi.org/10.21475/ajcs.20.14.03.p2173
Pholo-Tait, M., Kgetse, T., Tsheko, G. N., Thedi, O. T., Lethola, K., Motlamme, E. O., Ithuteng, M. I., & Ngwako, S. (2022). Genotypic variation in response to drought stress is associated with biochemical and transcriptional regulation of ureides metabolism in common bean (Phaseolus vulgaris L.). Acta Agriculturae Slovenica, 118(2), 1–9. https://doi.org/10.14720/aas.2022.118.2.2541
Porch, T. G., Ramirez, V. H., Santana, D., & Harmsen, E. W. (2009). Evaluation of common bean for drought tolerance in Juana Diaz, Puerto Rico. Journal of Agronomy and Crop Science, 195(5), 328–334. https://doi.org/10.1111/j.1439-037X.2009.00375.x
Raja, V., Qadir, S. U., Alyemeni, M. N., & Ahmad, P. (2020). Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 10(5). https://doi.org/10.1007/s13205-020-02206-4
Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary bean be a model for improvement of drought resistance. African Crop Science Journal, 21(4), 265–281.
Ripullone, F., Via, B., Biancolillo, A., Luan qifuluan, Q., Yanjie Li, C., Zhang, Y., Luan, Q., Jiang, J., & Li, Y. (2021). prediction and utilization of malondialdehyde in exotic pine under drought stress using Near-Infrared Spectroscopy. Frontiers in Plant Science, 12, 1–9. https://doi.org/10.3389/fpls.2021.735275
Rustamova, S., Shrestha, A., Naz, A. A., & Huseynova, I. (2021). Expression profiling of DREB1 and evaluation of vegetation indices in contrasting wheat genotypes exposed to drought stress. Plant Gene, 25(July 2020), 100266. https://doi.org/10.1016/j.plgene.2020.100266
Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290(3), 998–1009. https://doi.org/10.1006/bbrc.2001.6299
Saruhan Guler, N., & Pehlivan, N. (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biologica Hungarica, 67(2). https://doi.org/10.1556/018.67.2016.2.5
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012. https://doi.org/10.1155/2012/217037
Sharma, V., Goel, P., Kumar, S., & Singh, A. K. (2019). An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes. Plant Cell Reports, 38(2). https://doi.org/10.1007/s00299-018-2364-8
Shigeoka, S. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53(372), 1305–1319. https://doi.org/10.1093/jexbot/53.372.1305
Sivakumar, P., Sharmila, P., & Pardha Saradhi, P. (2000). Proline alleviates salt-stress-induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochemical and Biophysical Research Communications, 279(2). https://doi.org/10.1006/bbrc.2000.4005
Soares, C., Carvalho, M. E. A., Azevedo, R. A., & Fidalgo, F. (2019). Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, 161. https://doi.org/10.1016/j.envexpbot.2018.12.009
Sohag, A. A. M., Tahjib-Ul-Arif, M., Polash, M. A. S., Belal Chowdhury, M., Afrin, S., Burritt, D. J., Murata, Y., Hossain, M. A., & Afzal Hossain, M. (2020). Exogenous Glutathione-Mediated Drought Stress Tolerance in Rice (Oryza sativa L.) is Associated with Lower Oxidative Damage and Favorable Ionic Homeostasis. Iranian Journal of Science and Technology, Transaction A: Science, 44(4), 955–971. https://doi.org/10.1007/s40995-020-00917-0
Southern Africa Drought Resilience Initiative (SADRI). (2021). Drought Resilience Profiles | Botswana. In Cooperation in International Waters in Africa Program (CIWA).
Tatar, Ö., & Gevrek, M. N. (2008). Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Sciences, 7(4), 409–412. https://doi.org/10.3923/ajps.2008.409.412
Tyagi, S., Shumayla, Madhu, Singh, K., & Upadhyay, S. K. (2021). Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123585
Vendruscolo, E. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C. J., & Vieira, L. G. E. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164(10), 1367–1376. https://doi.org/10.1016/J.JPLPH.2007.05.001
Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., & Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67(6), 589–602. https://doi.org/10.1007/s11103-008-9340-6
Wei, T., Deng, K., Liu, D., Gao, Y., Liu, Y., Yang, M., Zhang, L., Zheng, X., Wang, C., Song, W., Chen, C., & Zhang, Y. (2016). Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant and Cell Physiology, 57(8), 1593–1609. https://doi.org/10.1093/pcp/pcw084
Yang, J., Wang, H., Zhao, S., Liu, X., Zhang, X., Wu, W., & Li, C. (2020). Overexpression levels of LbDREB6 differentially affect growth, drought, and disease tolerance in poplar. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.528550
Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum, 50(3), 389–394. https://doi.org/10.1007/s10535-006-0054-9
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Motlalepula Pholo-Tait, Metseyabeng Nametso NKANE, Samodimo Ngwako, Moagisi Ithuteng

This work is licensed under a Creative Commons Attribution 4.0 International License.