Successful Micropropagation of critically endangered Thymus bovei Benth: a Wild Medicinal Plant Strictly Endemic to the Jordanian Environment

Authors

  • Refad Y. ALKHAWALDAH 1Department of Horticulture and Crop Sciences, Faculty of Agriculture, University of Jordan, Amman, Jordan.
  • Rida A. SHIBLI Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman, Jordan.
  • Reham W. TAHTAMOUNI Department of Social and Applied Sciences, Princess Alia University College, Al-Balqa Applied University.
  • Mohamad A. SHATNAWI Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Tamadour AL-QUDAH Department of Nutrition and Food Technology, Faculty of Agriculture, Mutah University, Karak, Jordan
  • Tamara AL-QUDAH Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman, Jordan.

DOI:

https://doi.org/10.14720/aas.2025.121.3.18920

Keywords:

Endangered Plant, Jordan, Medicinal Plant, Micropropagation, Tissue Culture, Thymus bovei

Abstract

Creeping Thyme, known as Thymus bovei or locally referred to as Zateer Barry, is a critically endangered native plant species in Jordan, renowned for its exceptional healing properties. This study aims to establish a reliable micropropagation technique to prevent T. bovei from extinction. The research focused on examining the establishment, shoot multiplication, rooting, callus induction, and acclimatization of T. bovei. Explants were established in half-strength Murashige and Skoog (MS) media with gibberellic acid (GA3) at concentrations of 0.0, 0.5, and 1.0 mg/L. The highest shooting percentage (90%) was recorded with 0.5 mg/L GA3. Successful shoot multiplication was achieved by subculturing nodal segments onto half-strength MS media with kinetin (KIN), thidiazuron (TDZ), or benzylaminopurine (BA) at various concentrations plus 2.5 mg/L KIN and 0.5 mg/L GA3. Rooting was most effective on half-strength MS media with 1.0 mg/L indole-3-butyric acid (IBA), yielding an average of 5.29 roots per microshoot. The highest callus development, measured by fresh weight (0.601g), occurred in half-strength MS media with 2.0 mg/L 2,4-D, while no callus formed with naphthaleneacetic acid (NAA). Acclimatized plants showed a 90% survival rate when transferred to greenhouse conditions.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

Author Biographies

  • Refad Y. ALKHAWALDAH, 1Department of Horticulture and Crop Sciences, Faculty of Agriculture, University of Jordan, Amman, Jordan.

    Department of Horticulture and Crop Sciences, Faculty of Agriculture, University of Jordan, Amman, Jordan. 

  • Rida A. SHIBLI, Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman, Jordan.

    Professor; Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman, Jordan.

  • Reham W. TAHTAMOUNI, Department of Social and Applied Sciences, Princess Alia University College, Al-Balqa Applied University.

    Department of Social and Applied Sciences, Princess Alia University College

  • Mohamad A. SHATNAWI, Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan

    Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan

  • Tamadour AL-QUDAH, Department of Nutrition and Food Technology, Faculty of Agriculture, Mutah University, Karak, Jordan

    Department of Nutrition and Food Technology, Faculty of Agriculture, Mutah University, Karak, Jordan

  • Tamara AL-QUDAH, Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman, Jordan.

    Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman, Jordan.

References

Abdel-Hady, N. M., El-Hela, A. A., and Morsy, T. A. (2014). Phenolic content of some selected Lamiaceous Egyptian medicinal plants: antioxidant potential and ecological friend mosquito-larvicidal. Journal of the Egyptian Society of Parasitology, 44(1), 21-24. DOI:10.12816/0006442

Ahmad I, Tanveer H, Irfan A, Muhammad N, Maryam, Muhammad R, Muhammad I. (2013). Lethal effects of secondary metabolites on plant tissue culture. American-Eurasian J Agriculture and Environment Science, 13(4), 539-547. DOI: 10.5829/idosi.aejaes.2013.13.04.1975

Aicha, N., Rachida, T., and Abdelmalek, E.M. (2013). Micropropagation of Thymus satureioides Coss. an endangered medicinal plant of Morocco. International Journal of Agricultural Technology, 9, 421-435. Available online http://www.ijat-aatsea.com

Al- Eisawi, D. (1996). Vegetation of Jordan. UNESCO, Cairo office. Available online https://publication.doa.gov.jo/uploads/publications/28/SHAJ_2-45-57.pdf

Ali, H. M., Khan, T., Khan, M. A., & Ullah, N. (2022). The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnology and Applied Biochemistry, 69(6), 2624-2640. DOI: 10.1002/bab.2311

Islam A. T. M. R. and Alam M. F. (2018). In vitro callus induction and indirect organogenesis of Mentha piperita (L.) – an aromatic medicinal plant. GSC Biological and Pharmaceutical Sciences, 4(03), 49–60. DOI:10.30574/gscbps.2018.4.3.0078

Al-Quran, S. (2011). Conservation of medicinal plants in Ajlun woodland /Jordan. Journal of Medicinal Plants Research, 5, 5857-5862. Available online https://academicjournals.org/journal/JMPR/article-full-text-pdf/9A4DEBB41016

Bahrames D., Mansour E.D., Alireza and Afshin, N. (2005). Effects of germinated seeds of Trigonella foenumgraecum (Fenugreek) and cholestyramine on blood lipids profile and aortic fatty streak in rabbit. Pakistan Journal Biological Sciences, 8, 1529-1532. DOI: 10.3923/pjbs.2005.1529.1532

Bakhtiar, Z., Mirjalili, M. H., and Sonboli, A. (2016). In vitro callus induction and micropropagation of Thymus persicus (Lamiaceae), an endangered medicinal plant. Crop Breeding and Applied Biotechnology, 16(1), 48-54. DOI:10.1590/1984-70332016v16n1a8

Benkaddour, R., Ben Ali N., Azaroual L., Martin P., Lamarti A. (2022). Interaction effect of plant growth regulators on shoot micropropagation of aromatic plant Origanum elongatum (Bonnet) Emberger & Maire. American Journal of Plant Sciences, 13, 1126-1144. DOI: 10.4236/ajps.2022.138076

Biradar, S. R. (2017). Somatic embryogenesis of medicinally important herb Centella asiatica L. Bioscience Discovery, 8(2), 95-299. Available online http://biosciencediscovery.com

Coelho, N., Goncalves S, Elena M, Benito G. and Romano A. (2012). Establishment of an in vitro propagation protocol for Thymus lotocephalus, a rare aromatic species of the Algarve (Portugal). Plant Growth Regulation, 66, 69-74. DOI:10.1007/s10725-011-9630-x

Debnath, B. (2013). In vitro response, growth, and maintenance of callus of Aquilaria agallocha Roxb. (Thymelaeceae). Bioscience Discovery, 4(2), 155-159. Available online https://www.researchgate.net/profile/Bimal-Debnath-3/publication/321938654._In_vitro_response_growth_and_maintenance_of_callus_of_Aquilaria_agallocha_Roxb_Thymelaeaceae/links/5a3b5bdf0f7e9bbef9fec14b/In-vitro-response-growth-and-maintenance-of-callus-of-Aquilaria-agallocha-Roxb-Thymelaeaceae.pdf

Elmongy, M. S., Cao, Y., Zhou, H., & Xia, Y. (2018). Root development enhanced by using indole-3-butyric acid and naphthalene acetic acid and associated biochemical changes of in vitro azalea microshoots. Journal of Plant Growth Regulation, 37(3), 813-825. DOI:10.1007/s00344-017-9776-5

Engelmann, F. and Engels, J.M.M. (2002). Technologies and strategies for ex situ conservation. Rome: IPGRI, Pp: 89-104. DOI:10.1079/9780851995229.0089

Fisal, M., Alatar A., Hegazy A and Al- Harby S. (2014).Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Industrial Crops and Products, 62, 100-106. http://dx.doi.org/10.1016/j.indcrop.2014.08.019

Fay, M., (1992). Conservation of rare and endangered plants using in vitro methods. In Vitro Cellular and Developmental Biology – Plant, 28, 1-4. https://doi.org/10.1007/BF02632183

Frick, E. M., & Strader, L. C. (2018). Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2), 169-177. DOI: 10.1093/jxb/erx298

George, E. F., Hall, M. A. and De- Klerk, G. J. (2008). Plant propagation by tissue culture. Plant Cell Tissue and Organ Culture, 93, 353-355. DOI:10.1007/s11240-008-9357-1

Grzelak, M., Pacholczak, A., & Nowakowska, K. (2024). Challenges and insights in the acclimatization step of micropropagated woody plants. Plant Cell, Tissue and Organ Culture (PCTOC), 159(3), 72. https://doi.org/10.1007/s11240-024-02923-1

Hassan, S. T. S., Berchová-Bímová, K., Šudomová, M., Malaník, M., Šmejkal, K., & Rengasamy, K. R. R. (2018). In vitro study of multi-therapeutic properties of Thymus bovei Benth. essential oil and its main component for promoting their use in clinical practice. Journal of Clinical Medicine, 7(9), 283. https://doi.org/10.3390/jcm7090283

Jaradat, N., Adwan, L., K’aibni, S., Shraim, N., & Zaid, A. N. (2016). Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complementary and Alternative Medicine, 16(1), 418. DOI https://doi.org/10.1186/s12906-016-1408-2

Jayakumar, S. and Ramalingam R. (2013). Influence of additives on enhanced in vitro shoot multiplication of Orthosiphon aristatus (Blume) Miq.. Notulae Scientia Biologicae, 5(3), 338-345.

Karim, F. and Al-Qura’n, S. (1986). Medicinal plants of Jordan. Yarmouk University Press, Pp: 11-30. DOI:10.15835/nsb539068

Marco-Medina, A. and Casas J. (2015). In vitro multiplication and essential oil composition of Thymus moroderi Pau ex Martinez, an endemic Spanish plant. Plant Cell Tissue Organ Culture, 120, 99–108. DOI:10.1007/s11240-014-0583-4

Murashige, T. and Skoog, F. (1962). A revised media for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Mustafa, S. and Weal T. (2022). In vitro propagation and influence of silicon nanoparticles on growth of Thymus serpyllum. Eastern Journal of Agricultural and Biological Sciences, 2(4), 18-24. https://doi.org/10.53906/ejabs.v2i4.117

Negash, A., Krens, F., Schaart, J and Visser, B. (2001). In vitro conservation of enset under slow-growth conditions. Plant Cell, Tissue and Organ Culture, 66, 107–111. https://doi.org/10.1023/A:1010647905508

Ozudogru. E. A, Kaya E, Kirdok E and Issever-ozturk S. (2011). In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular and Developmental Biology – Plant, 309-320. https://doi.org/10.1007/s11627-011-9347-6

Papafotiou, M. and Kalantzis A. (2009). Seed germination and in vitro propagation of Sideritis athoa. Acta Horticulturae, 813(813), 471-476. https://doi.org/10.17660/ACTAHORTIC.2009.813.62

Rahmatullah M. (2011). Studies with callus induction of Vitex negundo: an aromatic medicinal plant. American-Eurasian Journal of Sustainable Agriculture, 5(1), 6-14. Available online https://www.aensiweb.net/AENSIWEB/aejsa/aejsa/2011/6-14.pdf

Royal Botanic Garden. www.royalbotanicgarden.org. Cited on 24-4-2023.

Royani , A., Prifiharni S., Priyotomo G., Sundjono S. (2021). Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, DOI: https://doi.org/10.30544/591

Sabagh, A. E., Mbarki, S., Hossain, A., Iqbal, M. A., Islam, M. S., Raza, A& Farooq, M. (2021). Potential role of plant growth regulators in administering crucial processes against abiotic stresses. Frontiers in Agronomy, 3, 648694. https://doi.org/10.3389/fagro.2021.648694

Sagharyan, M., Ganjeali A., Cheniany M., Kouhi S. (2020). Optimization of callus induction with enhancing production of phenolic compounds production and antioxidants activity in callus cultures of Nepeta binaloudensis Jamzad (Lamiaceae). Iranian Journal of Biotechnology, 18(4), 47-55. DOI:10.30498/IJB.2020.2621

Sarropoulou, V. and Maloupa E. (2019). In vitro propagation of Satureja thymbra L. (Lamiaceae): A valuable aromatic medicinal native plant of the Mediterranean region. Biological and Pharmaceutical Sciences, 9(2), 9–20. DOI:10.30574/gscbps.2019.9.2.0190

Sen, MK., Hassan, M.M., Nasrin, S., Jamal MAHM., Mamun-or-Rashid, ANM., and Biswas, N.,( 2013). An efficient plant regeneration protocol for Achyranthes aspera L. International Research Journal of Biotechnology, 4(5), 94-100. Available online https://www.interesjournals.org/articles/an-efficient-plant-regeneration-protocol-for-achyranthes-aspera-l.pdf

Shah, S. H., Islam, S., Mohammad, F., & Siddiqui, M. H. (2023). Gibberellic acid: a versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation, 42(12), 7352-7373. DOI:10.1007/s00344-023-11035-7

Shatnawi, M. A., Shibli, R. A., Migdadi, H., Obeidat, A., Ereifej, K.and Abu-Ein, A. M. (2006). Influence of different carbon sources on wild pear (Pyrus syriaca) growth and sugar uptake. World Journal of Agricultural Science, 2, 156-161. Available online https://www.researchgate.net/publication/316103323_Influence_of_different_carbon_sources_on_wild_pear_Pyrus_syriaca_growth_and_sugar_uptake

Shibli, R., Shatnawi, M., Subaih, W. and Ajlouni, M. (2006). In vitro conservation and cryopreservation of plant genetic resources: A review. World Journal of Agricultural Sciences, 2, 372-382. Available online https://www.idosi.org/wjas/wjas2(4)/3.pdf

Suhartanto, B., Astutik, M., Umami, N., Suseno, N., and Haq, M. S. (2022). The effect of explants and light conditions on callus induction of srikandi putih maize (Zea mays L.). In IOP Conference Series: Earth and Environmental Science, 1001(1), 1-5. DOI 10.1088/1755-1315/1001/1/012006

Swamy, M. and Sinniah U. (2016). Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects. Industrial Crops and Products, 87, 161-176. https://doi.org/10.1016/j.indcrop.2016.04.032

Tahtamouni, R., Shibli, R., Al-Abdallat, A., and Al-Qudah, T. (2016). Analysis of growth, oil yield, and carvacrol in Thymbra spicata L. after slow-growth conservation. Turkish Journal of Agriculture and Forestry, 40(2), 213-221. DOI 10.3906/tar-1404-54

Taifour, H., El-Ohlah A. (2014). Jordan plant red list, volume I. Royal Botanic Garden, Kew. Available online https://jo.chm-cbd.net/biodiversity/species-diversity/flora-jordan/jordan-plant-red-list/jordan-plant-red-list-i/download/en/1/Jordan%20Plant%20Red%20List%20%28email%29%20-%20Vol%201.pdf

Tepe, B. and Sokmen, A. (2007). Production and optimization of rosmarinic acid by (Satureja hortensis L.) callus cultures. Natural Product Research: Formerly Natural Product Letters, (21), 1133-1144. DOI: 10.1080/14786410601130737

Teshome, S. and Soromessa T. (2015). In vitro propagation of Satureja abyssinica (Benth.) Briq. - A valuable medicinal plant. Advanced Life Science and Technology, 34, 100-109. Available online: https://www.iiste.org/Journals/index.php/ALST/article/view/24380

Downloads

Published

10. 10. 2025

Issue

Section

Original Scientific Article

How to Cite

ALKHAWALDAH, R. Y. ., SHIBLI, R. A., TAHTAMOUNI, R. W. ., SHATNAWI, M. A. ., AL-QUDAH, T. ., & AL-QUDAH, T. (2025). Successful Micropropagation of critically endangered Thymus bovei Benth: a Wild Medicinal Plant Strictly Endemic to the Jordanian Environment. Acta Agriculturae Slovenica, 121(3), 1−11. https://doi.org/10.14720/aas.2025.121.3.18920

Most read articles by the same author(s)