Functional analysis of drought tolerance QTLs in two barley populations using BLAST on associated SNP sequencesFunctional analysis of drought tolerance QTLs in two barley populations using BLAST on associated SNP sequences
DOI:
https://doi.org/10.14720/aas.2024.120.4.19357Keywords:
Barley, Bioinformatics, Gene ontology, QTL validation, Single nucleotide polymorphismAbstract
Functional SNPs serve as biological markers that aid biologists and breeders in identifying genes linked to specific traits. This study explored the relationship between QTLs associated with drought tolerance and functional SNPs using two populations: Vada × Susptrit (V × S) and Cebada Cappa × Susptrit (C. Cappa × S). Bioinformatics tools were employed to analyze significant SNPs within QTL regions, revealing markers on chromosomes 1H, 2H, 3H, 5H, and 7H for the V × S population, and on 4H and 6H for C. Cappa × S. In total, 24 proteins/enzymes related to drought tolerance were characterized in the V × S population. At the same time, 10 were identified in C. Cappa × S. Notable proteins, including Phytochrome B and SAPK7, were located on chromosome 4H. These proteins play crucial roles in the plant's response to drought stress, with documented regulatory effects. Gene ontology analysis indicated four cellular components—membrane, nucleus, chloroplast, and proteasome complex—and five biological processes, such as oxidation-reduction and protein phosphorylation. The proteins exhibited diverse molecular functions, including ATP binding and kinase activity. Overall, the study highlights potential functional SNP markers for validating QTLs related to drought tolerance in barley.
References
Abdollahi Mandoulakani B., Eyvazpour E., Ghadimzadeh M. (2017). The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry, 139, 1-7. https://doi.org/10.1016/j.phytochem.2017.03.006
Ahmad J., Bashir H., Bagheri R., Baig A., Al-Huqail A., Ibrahim M.M., Qureshi M.I. (2017). Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS ONE, 12(9), e0185118. https://doi.org/10.1371/journal.pone.0185118 https://doi.org/10.1371/journal.pone.0185118
Ajigboye O.O., Lu C., Murchie E.H., Schlatter C., Wart G., Ray R.V. (2016). Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology, 137, 49-61. https://doi.org/10.1016/j.pestbp.2016.09.008
Alqurashi M., Thomas L., Gehring C., Marondedze C. (2017). A microsomal proteomics view of H2O2- and ABA-dependent responses. Proteomes, 5(22). https://doi.org/10.3390/proteomes5030022
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Bedada G., Westerbergh A., Müller T., Galkin E., Bdolach E., Moshelion M., Fridman E., Schmid K.J. (2014). Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics, 15(995)https://doi.org/10.1186/1471-2164-15-995
Basu S., Roychoudhury A. (2014). Expression Pprofiling of Aabiotic Sstress-Iinducible Ggenes in response to Mmultiple Sstresses in Rrice (Oryza sativa L.) Vvarieties with Ccontrasting Llevel of Sstress Ttolerance. BioMed Research International, 12 pages. http://dx.doi.org/10.1155/2014/706890. https://doi.org/10.1155/2014/706890
Behringer D., Zimmermann H., Ziegenhagen B., Liepelt S. (2015). Differential Ggene Eexpression Rreveals Ccandidate Ggenes for Ddrought Sstress Rresponse in Abies alba (Pinaceae). PLOS ONE. 10(4):e0124564. doi: 10.1371/journal.pone.0124564.https://doi.org/10.1371/journal.pone.0124564
Benešová M., Holá D., Fischer L., Jedelský P.L., Hnilička F., Wilhelmová N., Rothová O., Kočová M., Procházková D., Honnerová J., Fridrichová L., Hniličkova H. (2012). The Pphysiology and Pproteomics of Ddrought Ttolerance in Mmaize: Early Sstomatal Cclosure as a Ccause of Llower Ttolerance to Sshort-Tterm Ddehydration? PLoS ONE, 7(6):e38017. doi: 10.1371/journal.pone.0038017. https://doi.org/10.1371/journal.pone.0038017
Bundó M., Coca M. (2016). Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. Plant Biotechnology Journal, 14,: 1357-1367. https://doi.org/10.1111/pbi.12500
Campo S., Baldrich P., Messeguer J., Lalanne E., Coca M., San Segundo B. (2014). Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology, 165,: 688-704. https://doi.org/10.1104/pp.113.230268
Cheng L., Wang Y., He Q., Li H., Zhang X., Zhang F. (2016). Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biology, 16(188). https://doi.org/10.1186/s12870-016-0871-8
Choi J.Y., Seo Y.S., Kim S.J., Kim W.T., Shin J.S. (2011). Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Reports, 30,: 867-877. https://doi.org/10.1007/s00299-010-0989-3
Ciésla A., Mituła F., Misztal L., Fedorowicz-Strońska O., Janicka S., Tajdel-Zielińska M., Marczak M., Janicki M., Ludwików A., Sadowski J. (2016). A Rrole for Bbarley Ccalcium-Ddependent Pprotein Kkinase CPK2a in the Rresponse to Ddrought. Frontiers in Plant Science, 7,: 1550. doi: 10.3389/fpls.2016.01550. https://doi.org/10.3389/fpls.2016.01550
Cramer G.R., Sluyter S.C.V., Hopper D.W., Pascovici D., Keighley T., Haynes P.A. (2013). Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biology, 13(49).https://doi.org/10.1186/1471-2229-13-49
Csiszár J., Gallé A., Horváth E. (2012). Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiology and Biochemistry, 52,: 119-129. https://doi.org/10.1016/j.plaphy.2011.12.006
da Silva M.D., de Oliveira Silva R.L., Ferreira Neto J.R.C., Benko-Iseppon A.M., Akio Kido E. (2017). Genotype-dependent regulation of drought-responsive genes in tolerant and sensitive sugarcane cultivars. Gene, 633,: 17-27. https://doi.org/10.1016/j.gene.2017.08.022
Dansana P.K., Kothari K.S., Vij S., Tyagi A.K. (2014). OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Reports, 33,: 1425-1440. https://doi.org/10.1007/s00299-014-1626-3
Das A., Eldakak M., Paudel B., Kim D.W., Hemmati H., Basu C., Rohila J.S. (2016). Leaf Pproteome Aanalysis Rreveals Pprospective Ddrought and Hheat Sstress Rresponse Mmechanisms in Ssoybean. BioMed Research International. https://doi.org/10.1155/2016/6021047. https://doi.org/10.1155/2016/6021047
Daszkowska-Golec A., Skubacz A., Marzec M., Slota M., Kurowska M., Gajecka M., Gajewska P., Płociniczak T., Sitko K., Pacak A., Szweykowska-Kulinska Z., Szarejko I. (2017). Mutation in HvCBP20 (Cap Binding Protein 20) Aadapts Bbarley to Ddrought Sstress at Pphenotypic and Ttranscriptomic Llevels. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.00942
Ding H., Zhang Z.M., Qin F.F., Dai L.X., Li C.J., Ci D.W., Song W.W. (2014). Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization. Electronic Journal of Biotechnology, 17,: 304-310. https://doi.org/10.1016/j.ejbt.2014.09.004
Du H., Wang N.L., Cui F., Li X.H., Xiao J.H., Xiong L.Z. (2010). Characterization of the beta-Carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiology, 154,: 1304-1318. https://doi.org/10.1104/pp.110.163741
Dubey A.K., Yadav S., Kumar M., Singh V.K., Sarangiv B.K., Yadav D. (2010). In silico characterization of pectate lyase protein sequences from different source organisms. Enzym Research, 2010:950230. https://doi.org/10.4061/2010/950230
Faghani E., Gharechahi J., Komatsu S., Mirzaei M., Khavarinejad R.A., Najafi F., Farsad L.K., Salekdeh G.H. (2015). Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Journal of Proteomics, 114,: 1-15. https://doi.org/10.1016/j.jprot.2014.10.018
Ghosh Dasgupta, M., Dharanishanthi V. (2017). Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis. Gene, 627,: 393-407. https://doi.org/10.1016/j.gene.2017.06.050
Gimeno-Gilles C., Gervais M.L., Planchet E., Satour P., Limami A.M., Lelievre E. (2011). A stress-associated protein containing A20/AN1 zinc-finger domains expressed in Medicago truncatula seeds. Plant Physiology and Biochemistry, 49,: 303-310. https://doi.org/10.1016/j.plaphy.2011.01.004
Gorantla M., Babu P., Reddy Lachagari V., Reddy A., Wusirika R., Bennetzen J.L., Reddy A.R. (2006). Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. Journal of Experimental Botany, 58(2),: 253-265. https://doi.org/10.1093/jxb/erl213
Gou Y.M., Samans B., Chen S., Kibret K.B., Hatziq S., Turner N.C., Nelson M.N., Cowling W.A., Snowdon R.J. (2017). Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought stress. Plant Molecular Biology Reporter, 35,: 416-430. https://doi.org/10.1007/s11105-017-1032-4
Grigorova B., Vaseva I., Demirevska K., Feller U. (2011). Combined drought and heat stress in wheat: changes in some heat shock proteins. Biologia Plantarum, 55(1),: 105-111. https://doi.org/10.1007/s10535-011-0014-x
Guha A., Sengupta D., Reddy A.R. (2013). Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. Journal of Photochnology and Photobiology B-Biology, 119,: 71-83. https://doi.org/10.1016/j.jphotobiol.2012.12.006
Gupta S., Bharalee R., Bhorali P., Bandyopadhyay T., Gohain B., Agarwal N., Ahmed P., Saikia H., Borchetia S., Kalita M.C., Handique A.K., Das S. (2012). Identification of drought-tolerant progenies in tea by gene expression analysis. Functional and Integrative Genomics, 12,: 543-563. https://doi.org/10.1007/s10142-012-0277-0
Hellal F.A., El-Shabrawi H.M., Abd El-Hady M., Khatab I.A., El-Sayed S.A.A. (2018). Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. Journal of Genetic Engineering and Biotechnology, 16,: 203-212. https://doi.org/10.1016/j.jgeb.2017.10.009
Jiang J., Huo Z., Feng S., Zhang C. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Research, 137,: 78-88. https://doi.org/10.1016/j.fcr.2012.08.019
Liu J., Zhang F., Zhou J., Chen F., Wang B., Xie X. (2012). Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Molecular Biology, 78(3),: 289-300. https://doi.org/10.1007/s11103-011-9860-3
Jogaiah S., Govind S.R., Tran L.S.P. (2013). Systems biology-based approaches toward understanding drought tolerance in food crops. Critical Reviews in Biotechnology, 33,: 23-29. https://doi.org/10.3109/07388551.2012.659174
Koh S., Lee S.C., Kim M.K., Koh J.H., Lee S., An G., Choe S., Kim S.R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 65,: 453-466. https://doi.org/10.1007/s11103-007-9213-4
Kokáš, F., Vojta P., Galuszka P. (2016). Dataset for transcriptional response of barley (Hordeum vulgare) exposed to drought and subsequent re-watering. Data in Brief, 8,: 334-341. https://doi.org/10.1016/j.dib.2016.05.051
Kolenc, Z., Vodnik D., Mandelc S., Javornik B., Kastelec D., CČerenak A. (2016). Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology. Plant Physiology and Biochemistry, 105,: 67-78.https://doi.org/10.1016/j.plaphy.2016.03.026
Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., NagatoY., Sakakibara H., Kuromori T., Takahashi S., Kondou Y., Shinozaki K., Matsui M. (2009). Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiology, 50,: 1215-1231. https://doi.org/10.1093/pcp/pcp078
Kyozuka J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445,: 652-55. https://doi.org/10.1038/nature05504
Landi, S., Hausman J.F., Guerriero G., Esposito S. (2017). Poaceae vs. Aabiotic Sstress: Focus on dDrought and Ssalt Sstress, Rrecent iInsights and pPerspectives. Frontiers in Plant Science, 8,: 1214. https://doi.org/10.3389/fpls.2017.01214
Li J., Fan F., Wang L., Zhan Q., Wu P., Du J., Yang X., Liu Y. (2016). Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum. Peer Journal, 4,: e2005. https://doi.org/10.7717/peerj.2005
Li S., Xu C., Yang Y., Xia G. (2010). Functional analysis of TaDi19A, a salt-responsive gene in wheat. Plant Cell and Environment, 33,: 117-129. https://doi.org/10.1111/j.1365-3040.2009.02063.x
Li Y., Wang B., Dong R., Hou B. (2015). AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Science, 236,: 157-167. https://doi.org/10.1016/j.plantsci.2015.04.002
Li Z.Y., Chen S.Y. (2000). Isolation and Ccharacterization of a Ssalt- and Ddrought-inducible Ggene for Ss-adenosylmethionine Ddecarboxylase from wheat (Triticum aestivum L.). Journal of Plant Physiology, 156,: 386-393. https://doi.org/10.1016/S0176-1617(00)80078-4
Liu W.X., Zhang F.C., Zhang W.Z., Song L.F., Wu W.H., Chen Y.F. (2013). Arabidopsis Di19 Ffunctions as a Ttranscription Ffactor and Mmodulates PR1, PR2, and PR5 Eexpression in Rresponse to Ddrought Sstress. Molecular Plant biology, 6,: 1487-1502. https://doi.org/10.1093/mp/sst031
Ma Q., Kang J., Long R., Cui Y., Zhang T., Xiong J., Yang Q., Sun Y. (2016). Proteomic analysis of salt and osmotic-drought stress in alfalfa seedlings. Journal of Integrative Agriculture, 15(10),: 2266-2278. https://doi.org/10.1016/S2095-3119(15)61280-1
Mohammadi A., Sofalian O., Jafary H., Asghari A., Shekari F. (2018). Analysis of chromosomal regions controlling drought tolerance in barely (Hordeum vulgare L.) seedlings. Applied Ecology and Environmental Researches, 16,: 4251-4263. https://doi.org/10.15666/aeer/1604_42514263
Nadarajah K., Sidek H.M. (2010). The green MAPKs. Asian Journal of Plant Science, 9,: 1-10. https://doi.org/10.3923/ajps.2010.1.10
Nagesh Nayak, S. (2010). Identification of QTLs and genes for drought tolerance using linkage mapping and association mapping approaches in chickpea (Cicer arietinum). Ph.D. Thesis, Osmania University, India. 141 pp.
Neumann R.S., Kumar S., Shalchian-Tabrizi K. (2014). BLAST output visualization in the new sequencing era. Brieffing of Bioinformatics, 15(4),: 484-503. https://doi.org/10.1093/bib/bbt009
Oulas A., Minadakis G., Zachariou M., Sokratous K., Bourdakou M.M., Spyrou G.M. (2024). Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Biomedicines, 12(7) 1496. https://doi.org/10.3390/biomedicines12071496
Pieczynski M., Marczewski W., Hennig J., Dolata J., Bielewicz D., Piontek P,Wyrzykowska A., Krusiewicz D., Strzelczyk-Zyta D., Konopka-Postupolska D., Krzeslowska M., Jarmolowski A., Szweykowska-Kulinska Z. (2012). Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal, 11(4),: 459-469. https://doi.org/10.1111/pbi.12032
Pour Mohammadi P., Moieni A., Hiraga S., Komatsu S. (2012). Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 75,: 1906-1923. https://doi.org/10.1016/j.jprot.2011.12.041
Qin D., Dong J., Xu F., Ge S., Xu Q., Li M. (2017). Genome-Wwide Iidentification and Ccharacterization of Llight Hharvesting Cchlorophyll a/b Bbinding Pprotein Ggenes in Bbarley (Hordeum vulgare L.). Advances in Crop Science and Technology, 5,: 301. https://doi.org/10.4172/2329-8863.1000301
Rohila J.S., Yang Y.N. (2007). Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. Journal of Integrative Plant Biology, 49,: 751-759 https://doi.org/10.1111/j.1744-7909.2007.00501.x
Rollins J.A. (2012). Genetic and Proteomic Basis of Abiotic Stress Responses in Barley (Hordeum vulgare). PhD Thesis, Cologne University, Cologne, Germany, 92 pp.
Saavedra C., Milan M., Leite R.B., Cordero D., Patarnello T., Cancela M.L., Bargelloni L. (2017). A Mmicroarray Sstudy of Ccarpet-Sshell Cclam (Ruditapes decussatus) Sshows Ccommon and Oorgan-Sspecific Ggrowth-Rrelated Ggene Eexpression Ddifferences in Ggills. Original Research, 8,: 943. https://doi.org/10.3389/fphys.2017.00943
Seleiman M., Al-Suhaibani N., Ali N., Akmal M., Alotaibi, M., Refay Y., Dindaroglu T., Haleem Abdul-Wajid H., Leonardo Battaglia M. (2021). Drought Sstress Iimpacts on Pplants and Ddifferent Aapproaches to Aalleviate Iits Aadverse Eeffects. Plants, 10(2),: 259. https://doi.org/10.3390/plants10020259
Shaar-Moshe L., Hübner S., Peleg Z. (2015). Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biology, 15(111). https://doi.org/10.1186/s12870-015-0493-6
Stormo G.D. (2000). DNA binding sites: representation and discovery. Bioinformatics, 16(1),: 16-23. https://doi.org/10.1093/bioinformatics/16.1.16
Sun H., Xia B., Wang X., Gao F., Zhou Y. (2017). Quantitative Pphosphoproteomic Aanalysis Pprovides Iinsight into the Rresponse to Sshort-Tterm Ddrought Sstress in Ammopiptanthus mongolicus Rroots. International Journal of Molecular Science. https://doi.org/10.3390/ijms18102158
Sun T., Li M., Shao Y., Yu L., Ma F. (2017). Comprehensive Ggenomic Iidentification and Eexpression Aanalysis of the Pphosphate Ttransporter (PHT) Ggene Ffamily in Aapple. Frontiers in Plant Science, 8(426). https://doi.org/10.3389/fpls.2017.00426
Swamy B.P.M., Vikram P., Dixit S., Ahmed H.U., Kumar A. (2011). Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics, https://doi.org/10.1186/1471-2164-12-319
Szűcs P., Karsai I., von Zitzewitz J., Mészáros K., Cooper L.L.D., Gu Y.Q., Chen T.H.H., Hayes P.M., Skinner J.S. (2006). Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theoretical and Applied Genetics, 112,: 1277-1285. https://doi.org/10.1007/s00122-006-0229-y
Talamé V., Ozturk N.Z., Bohnert H.J., Tuberosa R. (2007). Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. Journal of Experimental Botany, 58,: 229-240. https://doi.org/10.1093/jxb/erl163
Thu-Ha P., Jung H.I., Park J.H., Kim J.G., Back K., Jung S. (2011). Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiology, 157,: 1746-1764. https://doi.org/10.1104/pp.111.188276
Vassilev D., Leunissen J., Atanassov A., Nenov A., Dimov G. (2005). Application of bioinformatics in plant breeding. Biotechnology and Biotechnological Equipment, 19(3),: 139-152. https://doi.org/10.1080/13102818.2005.10817293
Vítámvás P., Urban M.O., Škodáček Z., Kosová K., Pitelková I., Vítámvás J., Renaut J., Prášil I.T. (2015). Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Frontiers in Plant Science, 6,: 479. https://doi.org/10.3389/fpls.2015.00479
Wang C., Zhang D.W., Wang Y.C., Zheng L., Yang C.P. (2012). A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Molecular Biology Reports, 39(2),: 1047-53. doi: 10.1007/s11033-011-0830-2. https://doi.org/10.1007/s11033-011-0830-2
Wang Y., Fan K., Wang J., Ding Z., Wang H., Bi C., Zhang Y., Sun H. (2017). Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. Journal of Plant Physiology, 219,: 91-99. https://doi.org/10.1016/j.jplph.2017.10.001
Wang D.L., Wu-Wei Y.E., Wang J.J., SONG L.Y., FAN W.L., CUI Y.P. (2010). Constructing SSH Llibrary of Ccotton Uunder Ddrought Sstress and Aanalysis of Ddrought Aassociated Ggenes. Acta Agronomica Sinica, 36(12),: 2035-2044. https://doi.org/10.1016/S1875-2780(09)60087-0
Wehner G., Balko C., Enders M., Humbeck K., Ordon F. (2015). Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biology, 15,: 125. https://doi.org/10.1186/s12870-015-0524-3
Wendelboe-Nelson C. (2012). A Proteomic Analysis of Drought Stress in Barley (Hordeum vulgare). Dissertation, School of Life Sciences Heriot-Watt University Edinburgh.
Wi S.J., Kim S.J., Kim W.T., Park K.Y. (2014). Constitutive S‑adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta, 239,: 979-988. https://doi.org/10.1007/s00425-014-2027-0
Wilkins O., Bräutigam K., Campbel M.M. (2010). Time of day shapes Arabidopsis drought transcriptomes. Plant Journal, 63,: 715-727. https://doi.org/10.1111/j.1365-313X.2010.04274.x
Xuan Y., Zhou Z., Li H.B., Yang Z.M. (2016). Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Ecotoxicology and Environmental Safety, 132,: 153-163. https://doi.org/10.1016/j.ecoenv.2016.06.007
Yang D.H., Kwak K.J., Kim M.K., Park S.J., Yang K.Y., Kang H. (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Science, 214,: 106-112. https://doi.org/10.1016/j.plantsci.2013.10.006
Yi B., Zhou Y., Gao M., Zhang Z., Han Y., Yang G., Xu W., Huang R. (2014). Effect of Ddrought Sstress during Fflowering Sstage on Sstarch Aaccumulation and Sstarch Ssynthesis Eenzymes in Ssorghum Ggrains. Journal of Integrative Agriculture, 13,: 2399-2406. https://doi.org/10.1016/S2095-3119(13)60694-2
Zadražnika T., Hollung K., Egge-Jacobsenc W., Meglič V., Šuštar-Vozlič J. (2013). Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteomics, 78,: 254-272. https://doi.org/10.1016/j.jprot.2012.09.021
Zeng X., Bai L., Wei Z., Yuan H., Wang Y., Xu Q., Tang Y., Nyima T. (2016). Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics, 17,: 386. doi: 10.1186/s12864-016-2685-3. https://doi.org/10.1186/s12864-016-2685-3
Zhang C., Meng S., Li M., Zhao Z. (2016). Genomic identification and expression analysis of the phosphate transporter gene family in poplar. Frontiers in Plant Science, 7,: 1398. https://doi.org/10.3389/fpls.2016.01398
Zhao Q., Wang G., Jing Ji J., Jin C., Wu W., Zhao J. (2014). Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco. Journal of Plant Biochemistry and Biotechnology, 23,: 190-198. https://doi.org/10.1007/s13562-013-0201-2
Zhao Y., Du H.M., Wang Z.L., Huang B.R. (2011). Identification of proteins associated with water-deficit tolerance in C(4) perennial grass species, Cynodon dactylon x Cynodon transvaalensis and Cynodon dactylon. Physiologia Plantarum, 141,: 40-55. https://doi.org/10.1111/j.1399-3054.2010.01419.x
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Arash Mohamadi, Omid Sofalian, Hossein Jafari, ali asghari, Farid Shekari, Seyed Mohamad Mahdi Mortazavian, fatemeh mohamadi azar

This work is licensed under a Creative Commons Attribution 4.0 International License.