Health risk assessment of heavy metals in basil (Ocimum basilicum L.) grown in artificially contaminated substrates
DOI:
https://doi.org/10.14720/aas.2025.121.1.19698Keywords:
cadmium, chromium, lead, pollutionAbstract
This study aimed to determine the levels of Cd, Cr and Pb in basil (Ocimum basilicum L.) cultivated on artificially contaminated substrates and to assess their potential harmful effects on human health via the calculation of the target hazard quotients (THQ). A pot experiment was performed in a completely randomized design for each tested heavy metal. It included four contamination treatments (0, 20, 50 and 100 mg kg-1 for Cd, and 0, 100, 250 and 500 mg kg-1 for Cr and Pb). Concentrations of Cd, Cr and Pb in plants samples were determined by atomic absorbtion spectroscopy. The results of this study showed that the concentrations of Cd, Cr and Pb were several times higher in roots than in the aboveground parts of basil plants regardless of contamination levels. These are desirable results because only aboveground parts of basil are used for medicinal purposes or consumption. The THQ values for Cd, Cr and Pb observed in this study were lower than 1 regardless of contamination levels, indicating that the consumption of basil from the study site (up to 10 g per day) does not pose a risk to human health from the point of view of heavy metal investigated.
References
Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K., & Wolf, W. M. (2017). Heavy metal uptake by herbs. V. Metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water, Air, & Soil Pollution, 228(9), 334. https://doi.org/10.1007/s11270-017-3508-0
Azizah, N. S., Irawan, B., Kusmoro, J., Safriansyah, W., Farabi, K., Oktavia, D., Doni, F., & Miranti, M. (2023). Sweet basil (Ocimum basilicum L.) – A review of its botany, phytochemistry, pharmacological activities, and biotechnological development. Plants, 12(24), 4148. https://doi.org/10.3390/plants12244148
Bhasin, T., Lamture, Y., Kumar, M., & Dhamecha, R. (2023). Unveiling the health ramifications of lead poisoning: A narrative review. Cureus, 15(10), e46727. https://doi.org/10.7759/cureus.46727
Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium toxicity and health effects – A brief summary. Molecules, 28(18), 6620. https://doi.org/10.3390/molecules28186620
Dinu, C., Vasile, G. G., Buleandra, M., Popa, D. E., Gheorghe, S., & Ungureanu, E-M. (2020). Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. Journal of Soils and Sediments, 20, 2141–2154. https://doi.org/10.1007/s11368-019-02550-w
Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, 177. https://doi.org/10.3389/fphar.2013.00177
Ezez, D., Birhanu, H., Shamena, S., & Engidaw, S. (2024). Bioaccumulation of heavy metals, assessment of carcinogenic and non-carcinogenic health risk in various spices. Journal of Hazardous Materials Advances, 15, 100441. https://doi.org/10.1016/j.hazadv.2024.100441
FAO. (1985). Guidelines: land evaluation for irrigated agriculture. Soils Bulletin 55. Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved from https://www.fao.org/4/x5648e/x5648e00.htm
Fatima, G., Raza, A. M., Hadi, N., Nigam, N., & Mahdi, A. A. (2019). Cadmium in human diseases: It’s more than just a mere metal. Indian Journal of Clinical Biochemistry, 34(4), 371–378. https://doi.org/10.1007/s12291-019-00839-8
Hlihor, R. M., Roșca, M., Hagiu-Zaleschi, L., Simion, I. M., Daraban, G. M., & Stoleru, V. (2022). Medicinal plant growth in heavy metals contaminated soils: Responses to metal stress and induced risks to human health. Toxics, 10(9), 499. https://doi.org/10.3390/toxics10090499
Isinkaralar, O., Isinkaralar, K., & Nguyen, T. N. T. (2024). Spatial distribution, pollution level and human health risk assessment of heavy metals in urban street dust at neighbourhood scale. International Journal of Biometeorology, 2024. https://doi.org/10.1007/s00484-024-02729-y
Jadaa, W., & Mohammed, H. K. (2023). Heavy metals – definition, natural and anthropogenic sources of releasing into ecosystems, toxicity, and removal methods – An overview sStudy. Journal of Ecological Engineering, 24(6), 249–271. https://doi.org/10.12911/22998993/162955
Jena, V., & Gupta, S. (2012). Study of heavy metal distribution in medicinal plant basil. Journal of Environmental & Analytical Toxicology, 2, 8. https://doi.org/10.4172/2161-0525.1000161
Lisjak, M., Špoljarević, M., Agić, D., & Andrić, L. 2009. Practicum-Plant Physiology. Osijek: Faculty of Agriculture in Osijek.
Łuszczki, J. J., Gustaw-Rothenberg, K., Chmielewski, J., & Florek-Łuszczki, M. (2019). Prospects for the use of herbal medicines in relation to progressing environmental pollution. Medycyna Środowiskowa, 22(1-2), 5–8. https://doi.org/10.26444/ms/117884
Lycas, C., Zografou, M., & Kazi, M. (2022). Cadmium, nickel, chromium, and lead accumulation in roots, shoots, and leaves of basil plants (Ocinum basilicum L.). International Journal of Agriculture and Environmental Science, 9(2), 1–14. https://doi.org/10.14445/23942568/IJAES-V9I2P101
Mehes-Smith, M., Nkongolo, K., & Cholewa, E. (2013). Coping mechanisms of plants to metal contaminated soil. In S. Silvern & S. Yang (Eds.), Environmental Change and Sustainability. London: InTechOpen. https://doi.org/10.5772/55124
Nadeem, H. R., Akhtar, S., Sestili, P., Ismail, T., Neugart, S., Qamar, M., & Esatbeyoglu, T. (2022). Toxicity, antioxidant activity, and phytochemicals of basil (Ocimum basilicum L.) leaves cultivated in southern Punjab, Pakistan. Foods, 11(9), 1239. https://doi.org/10.3390/foods11091239
Oladeji, O. M., Kopaopa, B. G., Mugivhisa, L. L, & Olowoyo, J. O. (2024). Investigation of heavy metal analysis on medicinal plants used for the treatment of skin cancer by traditional practitioners in Pretoria. Biological Trace Element Research, 202(2), 778–786. https://doi.org/10.1007/s12011-023-03701-4
Pandey, S. K., & Singh, H. (2011). A simple, cost-effective method for leaf area estimation. Journal of Botany, 2011, 658240. https://doi.org/10.1155/2011/658240
Polyakova, M. N., Martirosyan Y. T., Dilovarova, T. A., & Kosobryukhov, A. A. (2015). Photosynthesis and productivity of basil plants (Ocimum basilicum L.) under different irradiation. Sel’skokhozyaistvennaya Biologiya, 50(1), 124–130. https://doi.org/10.15389/agrobiology.2015.1.124eng
Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F, & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067
Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy, 13(6), 1521. https://doi.org/10.3390/agronomy13061521
Shin, D. Y., Lee, S. M., Jang, Y., Lee, J., Lee, C. M., Cho, E-M., & Seo, Y. R. (2023). Adverse human health effects of chromium by exposure route: A comprehensive review based on toxicogenomic approach. International Journal of Molecular Sciences, 24(4), 3410. https://doi.org/10.3390/ijms24043410
Siruguri, V., & Bhat, R. V. (2015). Assessing intake of spices by pattern of spice use, frequency of consumption and portion size of spices consumed from routinely prepared dishes in southern India. Nutrition Journal, 14, 7. https://doi.org/10.1186/1475-2891-14-7
Tefera, M., & Teklewold, A. (2021). Health risk assessment of heavy metals in selected Ethiopian spices. Heliyon, 7(5), e07048. https://doi.org/10.1016/j.heliyon.2021.e07048
Ur Rahman, S., Qin, A., Zain, M., Mushtaq, Z., Mehmood, F., Riaz, L., . . . Shehzad, M. (2024). Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon, 10(6), e27724. https://doi.org/10.1016/j.heliyon.2024.e27724
USEPA. (2011). United States Environmental Protection Agency – Regional Screening Level (RSL) Summary Table: November 2011. Retrieved from http://www.epa.gov/regshwmd/risk/human/Index.htm
Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55, 35. https://doi.org/10.1186/1999-3110-55-35
WHO/FAO. (2007). Joint FAO/WHO Food Standard Codex Alimentarius Commission 13th Session. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene. Houston, United States of America, 4 – 9 December, 2006.
Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Senad MURTIĆ, Ajla SMAJLOVIĆ, Adnan HADŽIĆ, Bekir TANKOSIĆ, Mirza VALJEVAC, Amina ŠERBO, Adna HADŽIĆ, Nermina HASIČEVIĆ

This work is licensed under a Creative Commons Attribution 4.0 International License.