Beneficial effect of organic and inorganic forms of selenium on yield and nutritional characteristics of beetroot
DOI:
https://doi.org/10.14720/aas.2025.121.1.19926Keywords:
Beta vulgaris L.; antioxidant status; betalain pigments; selenate; selenocystine; yieldAbstract
Beetroot is an essential component of human diet and a source of biologically active compounds valuable for pharmaceutical and food industry. To increase the content of essential nutrients and develop a functional food product with enhanced antioxidants, the effect of foliar sodium selenate and selenocystine supply on yield and biochemical characteristics of two table beet cultivars (Marusia and Nezhnost) was assessed. Compared to the untreated control, foliar application of 26.4 mM sodium selenate increased root yeild by 1.20-1.25 times, monosaccharide content by 1.49-2.25 times, betalain pigments by 1.56-2.17 times and total antioxidant activity (AOA) by 1.38-1.79 times, whereas the selenocystine supply increased the same parameters by 1.44-1.85, 1.64-3.4, 1.28-1.50 and 1.31-1.33 times, respectively. Compared to pulp, root peel demostrated 2-2.6 times higher levels of betalain pigments, 1.9-2.4 times higher levels of polyphenols (TP), and 1.5-2.2 times higher antioxidant activity. Significant varietal differences in biochemical characteristic changes due to organic and inorganic Se supply were recorded. Taking into account the relatively low Se biofortification levels of roots (3-3.5 in pulp and 7-12 in peel), the results prove the importance of Se application mostly to improve beetroot yield, antioxidant content including betalain pigments, and root peel utilization as a significant souce of pharmaceuticals.
References
Abedi-Firoozjah, R., Parandi, E., Heydari, M., Kolahdouz-Nasiri, A., Bahraminejad, M., Mohammadi, R., Rouhi, M., & Garavand, F. (2023). Betalains as promising natural colorants in smart/active food packaging. Food Chemistry, 424, 136408. https://doi.org/ 10.1016/j.foodchem.2023.136408.
Agic, R., Zdravkovska, M., Popsimonova, G., Dimovska, D., Bogevska, Z., & Davitkovska, M. (2018). Yield and quality of beetroot (Beta vulgaris ssp. esculenta L.) as a result of microbial fertilizers. Contemporary Agriculture, 67(1), 40-44.
Alfthan, G. V. (1984). A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Analitica Chimica Acta, 165, 187–194.
Antoshkina, M., Golubkina, N., Poluboyarinov, P., Skrypnik, L., Sekara, A., Tallarita, A., & Caruso, G. (2023). Effect of sodium selenate and selenocystine on Savoy cabbage yield, morphological and biochemical characteristics under Chlorella supply. Plants, 12(5), 1020. doi: 10.3390/plants12051020.
Brzezinska-Rojek, J., Sagatovych, S., Malinowska, P., Gadaj, K., Prokopowicz, M., & Grembecka, M. (2023). Antioxidant capacity, nitrite and nitrate content in beetroot-based dietary supplements. Foods, 12, 1017. https:// doi.org/10.3390/foods12051017.
Bucur, L., Aralunga, C., Schroder, V. (2016). The betalains content and antioxidant capacity of red beet (Beta vulgaris L. subsp.vulgaris). Farmacia, 64(2), 198—201.
Calva-Estrada, S. J., Jiménez-Fernández, M., & Lugo-Cervantes, E. (2022). Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry, Food Chemistry, 4, 100089. https://doi.org/10.1016 /j.fochms.2022.100089.
Carter, M. R., & Gregorich, E. G. (ed.) (2008). Soil sampling and methods of analysis, 2d ed. Canadian Society of Soil Science. CRC Press Taylor & Francis Group.
Chikara, N., Kushwaha, K., Jaglan, S., Sharma, P., & Panghal, A. (2019). Nutrition, physicochemical, and functional quality of beetroot (Beta vulgaris L.) incorporated Asian noodles. Cereal Chemistry, 96, 154−161.
Czapski, J., Mikołajczyk, K., & Kaczmarek, M. (2009). Relationship between antioxidant capacity of red beet juice and contents of its betalain pigments. Polish Journal of Food and Nutrition Sciences, 59, 119–122.
da Silva, D. V. T., dos Santos Baião, D., de Oliveira, F., Silva, G., Alves, D., Perrone, D., Aguila, E. M. & Paschoalin V. M. M. (2019). Betanin, a natural food additive: stability. bioavailability, antioxidant and preservative ability assessments. Molecules, 24, 2403058.
de Oliveira, V. C., Faquin, V., Guimarães, K. C., Andrade, F. R., Pereira, J., & Guilherme, L. R. G. (2018). Agronomic biofortification of carrot with selenium. Ciência e Agrotecnologia, 42(2), 138-147. http://dx.doi.org/10.1590/1413-70542018422031217.
Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173–289. doi: 10.1080/10408690091189257.
Dinh, Q. T., Wang, M., Tran, T. A. T., Zhou, F., Wang, D., Zhai, H., Peng, Q., Xue, M., Du, Z., Bañuelos, G. S., Lin, Z.-Q., & Liang, D. (2019). Bioavailability of selenium in soil-plant system and a regulatory approach, Critical Reviews in Environmental Science and Technology, 49(6), 443-517. doi: 10.1080/10643389. 2018.1550987.
dos S. Baião. D., da Silva D. V. T., & Paschoalin, V. M. F. (2020). Beetroot, a remarkable vegetable: Its nitrate and phytochemical contents can be adjusted in novel formulations to benefit health and support cardiovascular disease therapies. Antioxidants, 9, 960. doi:10.3390/antiox9100960.
El-Gamal, I. S., Abd El-Aal, M. M. M., El-Desouky, S. A., Khedr, Z. M., & Abo Shady, K. A. (2016). Effect of some growth substances on growth, chemical compositions and root yield productivity of sugar beet (Beta vulgaris L.) plant. Middle East Journal of Agriculture Research, 5(2), 171-185.
Fu, Y., Shi, J., Xie, S. Y., Zhang, T. Y., Soladoye, O. P., & Aluko, R. E. (2020). Red beetroot betalains: perspectives on extraction, processing, and potential health benefits. Journal of Agricultural and Food Chemistry, 68(42), 11595-11611. doi: 10.1021/acs.jafc.0c04241.
Golubkina, N., Kekina, H., & Caruso G. (2018). Yield, quality and antioxidant properties of Indian mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants, 7, 80.
Golubkina, N., Skrypnik, L., Logvinenko, L., Zayachkovsky, V., Smirnova, A., Krivenkov, L., Romanov, V., Kharchenko, V., Poluboyarinov, P., Sekara, A., Tallarita, A., & Caruso G. (2023). The ‘edge effect’ phenomenon in plants: morphological, biochemical and mineral characteristics of border tissues. Diversity, 15(1), 123. https://doi.org/ 10.3390/d15010123.
Golubkina, N., Zamana, S., Seredin T., Poluboyarinov, P., Sokolov, S., Baranova. H., Krivenkov, L., Pietrantonio, L., & Caruso, G. (2019). Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants, 8, 102. doi: 10.3390/plants8040102.
Golubkina, N. A., Kekina, H. G., Molchanova, A. V., Antoshkina, M. S., Nadezhkin, S. M., & Soldatenko, A. V. (2020). Plants Antioxidants and Methods of Their Determination, Infra M: Moscow, (in Russian).
Hegedűsová, A., Hegedűs, O., Jakabová, S., Andrejiová, A., Šlosár, M., Mezeyová, I., & Golian, M. (2021). Selenium Supplementation in Horticultural Crops, first ed., Springer Nature, Cham.
Kavalcová, P., Bystrická, J., Tomáš, J., Kovarovič, J., & Lenková, M. (2015). The content of total polyphenols and antioxidant activity in red beetroot. Potravinárstvo, 9(1), 77–83.
Khan, Z., Thounaojam, T. C., Chowdhury, D., & Upadhyaya, H. (2023). The role of selenium and nano selenium on physiological responses in plant: a review. Plant Growth Regulation, 100, 409–433. https://doi.org/10.1007/s10725-023-00988-0.
Kujala, T. S., Vienola, M. S., Klika, K. D., Loponen, J. M., & Pihlaja, K. (2002). Betalain and phenolic compositions of our beetroot (Beta vulgaris) cultivars. European Food Research and Technology, 214, 505–510. doi: 10.1007/s00217-001-0478-6.
Liu, H., Xiao, C., Qiu, T., Deng, J., Cheng, H., Cong, X., Cheng, S., Rao, S., & Zhang, Y. (2023). Selenium regulates antioxidant, photosynthesis, and cell permeability in plants under various abiotic stresses: A review. Plants, 12, 44. https://doi.org/ 10.3390/plants12010044.
Lundberg, J. O., & Weitzberg, E. (2005). NO generation from nitrite and its role in vascular control Arteriosclerosis, Thrombosis and Vascular Biology, 25, 915-922.
Malagoli, M., Schiavon, M., dall’Acqua, S., & Pilon-Smits, E. A. H. (2015). Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science, 6, 280. doi: 10.3389/fpls.2015.00280.
Ninfali, P., & Angelino, D. (2013). Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia, 89, 188–199. doi: 10.1016/j.fitote.2013.06.004.
Pilon-Smits, E. A. H., & Quinn, C. F. (2010). Selenium metabolism in plants. In Cell Biology of Metals and Nutrients; Hell, R.; Mendel, R.R., Eds.; Springer: Berlin/Heidelberg, Germany.
Płatosz, N., Sawicki, T., & Wiczkowski, W. (2020). Profile of phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Polish Journal of Food Nutrition and Sciences, 70, 55–65.
Poluboyarinov, P. A., Moiseeva, I. Y., Mikulyak, N. I., Golubkina, N. A., & Kaplun, A. P. (2022). New synthesis of cysteine and selenocystine enantiomers and their derivatives News of Higher Educational Technologies. Series Chemistry and Chemical Technology, 65(2), 19-29. https://doi.org/ 10.6060/ ivkkt.20226502.6466 (in Russian).
Rašovský, M., Pačuta, V., Ducsay, L., & Lenická, D. (2022). Quantity and quality changes in sugar beet (Beta vulgaris provar. altissima Doel) induced by different sources of biostimulants. Plants, 11(17), 2222. doi: 10.3390/plants11172222.
Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. doi: 10.3390/molecules26092520.
Sami, F., Yusuf, M., Faizan, M., Faraz, A., & Hayat, S. (2016). Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109, 54-61. https://doi.org/10.1016/ j.plaphy.2016.09.005.
Sentkowska, A., & Pyrzynska, K. (2020). Determination of selenium species in beetroot juices. Heliyon, 6(6), e04194. https://doi.org/10.1016/j.heliyon.2020.e04194.
Sentkowska, A., & Pyrzyńska, K. (2023). Old-fashioned, but still a superfood—red beets as a rich source of bioactive compounds. Applied Science, 13, 7445. https:// doi.org/10.3390/app13137445.
Slatnar, A., Štampar, F., Veberič, R., & Jakopič, J. (2015). HPLC-MS identification of betalains profile of different beetroot (Beta vulgari L. ssp. vulgaris) parts and cultivars. Journal of Food Science, 80, 1952–1958.
Swamy, P. M. (2008). Laboratory Manual on Biotechnology; Rastogi Publications: Meerut, India, 617.
Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P. Müller, U., Höglinger, O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46-55.
Zhang, Y., Nan, J., & Yu, B. (2016). OMICS technologies and applications in sugar beet. Frontiers in Plant Science, 7, 1–11.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dr. Nadezhda GOLUBKINA, Dr. Vladimir ZAYACHKOVSKY, Dr. Pavel POLUBOYARINOV, Zarema AMAGOVA, Dr.Agnieszka SĘKARA, Dr. Otilia Cristina MURARIU, Dr.Alessio TALLARITA, Dr.Gianluca CARUSO

This work is licensed under a Creative Commons Attribution 4.0 International License.