Inheritance mechanism of fruit yield and yield-related traits in tomato for cadmium stress tolerance
DOI:
https://doi.org/10.14720/aas.2025.121.3.22246Keywords:
Average degree of dominance, Cd stressed, gene action, heritability, Solanum lycopersicum L, Variance/covariance graphsAbstract
Understanding inheritance patterns and yield-related traits under cadmium stress is essential for breeding strategies that reduce cadmium’s negative effects on crops. In a study, fifteen F1 tomato hybrids from six genotypes were evaluated under both cadmium and non-cadmium conditions. The genetic analysis confirmed that a simple additive-dominance model explained the inheritance of most traits, suggesting that a few genes, often with one having a stronger effect, control these traits. Over-dominance was observed in most traits, and genotypes P3 and P5 carried the most dominant genes, performing best under cadmium stress. Heritability estimates showed that, under non-cadmium conditions, traits like branch number, fruit set, fruit mass, and locule number had medium narrow sense heritability, indicating dominance gene action was the main factor in inheritance. Other traits with low heritability also pointed to the importance of dominance effects. As a result, P3 and P5 genotypes were more tolerant to cadmium stress due to their dominant gene composition. Understanding the roles of dominance and non-additive gene action can guide the development of high-yield, cadmium-tolerant tomato varieties.
Metrics
Downloads
References
Alcántara, E., Romera, F. J., Cañete, M., De la Guardia, M. D. (1994). Effects of heavy metals on both induction and function of root Fe (lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany, 45(12), 1893-1898.doi: 10.1093/jxb/45.12.1893
AOAC. (1990): AOAC: Official methods of analysis (Volume 1). Washington, DC, Association of Official Analytical Chemists.
Badawy, I. H., Hmed, A. A., Sofy, M. R., & Al-Mokadem, A. Z. (2022). Alleviation of cadmium and nickel toxicity and phyto-stimulation of tomato plant l. by endophytic micrococcus luteus and enterobacter cloacae. Plants, 11(15), 2018. doi:10.3390/plants11152018
Bhandari, P., Kim, J., & Lee, T. G. (2023). Genetic architecture of fresh-market tomato yield. BMC Plant Biology, 23(1), 18. doi:10.1186/s12870-022-04018-5
Bhattarai, K., Sharma, S., Panthee, D. (2018): Diversity among modern tomato genotypes at different levels in fresh-market breeding. International Journal of Agronomy, 1-15. doi:10.1155/2018/4170432
Chen, L., Wu, M., Jin, W., Lei, T., Li, Y., Wu, X., Fu, S. (2023): Gene identification and transcriptome analysis of cadmium stress in tomato. Frontiers in Sustainable Food Systems, 7, 1303753.doi:10.3389/fsufs.2023.1303753
Chiao, W. T., Chen, B. C., Syu, C. H., Juang, K. W. (2020): Aspects of cultivar variation in physiological traits related to Cd distribution in rice plants with a short-term stress. Botanical Studies, 61, 1-14. doi: 10.1186/s40529-020-00304-3
Elnager, M. M. (2018). Estimation of genetic components and heritability for fruits yield and quality characters in tomato (Solanum Lycopersicom). Annals of Agricultural Science, Moshtohor, 56(3), 675-686. doi:10.21608/ASSJM.2018.50321
Ene, C. O., Abtew, W. G., Oselebe, H. O., Ozi, F. U., Ogah, O., Okechukwu, E. C., & Chukwudi, U. P. (2023). Hybrid vigor and heritability estimates in tomato crosses involving Solanum lycopersicum × S. pimpinellifolium under cool tropical monsoon climate. International Journal of Agronomy, 1, 3003355. doi:10.1155/2023/3003355
Godinho, D. P., Fragata, I., Majer, A., Rodrigues, L. R., Magalhães, S. (2024). Limits to the adaptation of herbivorous spider mites to metal accumulation in homogeneous and heterogeneous environments. Journal of Evolutionary Biology, 37(6), 631-641. doi:10.1101/2023.03.15.532545
Goffar, M. A., Ahmed, A., & Halim, G. M. A. (2016). Inheritance mechanism of yield and yield components in tomato. Bangladesh Journal of Agricultural Research, 41(2), 335-344. doi:10.3329/BJAR.V41I2.28235
Guo, M., Wang, X. S., Guo, H. D., Bai, S. Y., Khan, A., Wang, X. M., ... Li, J. S. (2022). Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Frontiers in Plant Science, 13, 949541.doi:10.3389/fpls.2022.949541
Hasan, M., Liu, C., Wang, F., Ahammed, G., Zhou, J., Xu, M., Yu, J., Xia, X. (2016). Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere, 161, 536-545. doi:10.1016/j.chemosphere.2016.07.053
Hayman, B.I., (1954a): The analysis of variance of diallel tables. Biometrics, 10, 235–244.
Hayman, B.I., (1954b): The theory and analysis of diallel crosses. Genetics, 39, 789–809.
Huang, L., Liu, X., Liu, Y., Tanveer, M., Chen, W., Fu, W., Wang, Q., Guo, Y., & Shabala, S. (2024). Revealing mechanistic basis of ameliorating detrimental effects of cadmium in cherry tomatoes by exogenous application of melatonin and brassinosteroids. Ecotoxicology and Environmental Safety, 283, 116768. doi:10.1016/j.ecoenv.2024.116768
Jalmi, S., Bhagat, P., Verma, D., Noryang, S., Tayyeba, S., Singh, K., Sharma, D., Sinha, A. (2018). Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 9, 12. doi:10.3389/fpls.2018.00012
Jinks, J.L., (1954). The analysis of continuous variation in a diallel cross of nicotianarustica varieties. Genetics, 39, 767–788.
Jones, R.M., (1965). Analysis of variance of the half diallel table. Heredity, 20, 117–121.
Khan, I., Asaf, S., Jan, R., Bilal, S., , L., Khan, A., Kim, K., AlHarrasi, A. (2023): Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Frontiers in Plant Science, 14, 1100895. doi:10.3389/fpls.2023.1100895
Kumar, P., Ram, C. N., Singh, M. K., & Saini, S. (2020). Studies on analysis of variance and mean performance of parents and their crosses among various quantitative traits in tomato (Solanum lycopersicum L.). International Journal of Chemical Studies, 8(1), 1992-2003. doi:10.22271/CHEMI.2020.V8.I1AD.8558
Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., et al. (2023): Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 325, 121433. doi: 10.1016/j.envpol.2023.121433
Lone, S., Hussain, K., Malik, A., Masoodi, K. Z., Dar, Z. A., Nazir, N., ... & Hussain, S. M. (2021). Gene action studies in cherry tomato for yield and yield attributing traits in open and protected environment. International Journal of Agricultural and Applied Sciences, 2(2), 34-39. doi:10.52804/ijaas2021.226
Lupp, R. M., Marques, D. N., Lima Nogueira, M., Carvalho, M. E. A., Azevedo, R. A., Piotto, F. A. (2024). Cadmium tolerance in tomato: determination of organ-specific contribution by diallel analysis using reciprocal grafts. Environmental Science and Pollution Research International, 31(1), 215–227. doi:10.1007/s11356-023-31230-z
Mukherjee, D., Mandal, A. R., Chatterjee, S., Sengupta, S., Islam, S. M., Kundu, S., ... & Chattopadhyay, A. (2024). Genetics of qualitative and quantitative traits in crosses involving cherry and purple tomato genotypes. Crop Breeding and Applied Biotechnology, 24, e46302416. doi:10.1590/1984-70332024v24n1a06
Patel, A., Kathiria, K. (2018): Graphical analysis for fruit yield and its component traits in chilli (Capsicum annuum L.). Electronic Journal of Plant Breeding, 9, 926. doi:10.5958/0975-928x.2018.00115.1.
Raja, S., Farhat, F., Tariq, A., Malik, Z., Aziz, R., Kamran, M., Elsharkawy, M., Ali, A., Al-hashimi, A., Elshikh, M. (2022): Genetic behavior of tomato (Solanum lycopersicum L.) germplasm governing heavy metal tolerance and yield traits under wastewater irrigation. 11(21), 2973. doi:10.3390/plants11212973
Rudas, L., & Torbaniuk, M. (2025). Combining ability of parental forms, inheritance and manifestation of the trait of lycopene content in fruits of F1 tomato hybrids. Acta agriculturae Slovenica, 121(1), 1-8. doi:10.14720/aas.2025.121.1.13687
Sappah, A., Elrys, A., Desoky, E., Zhao, X., Wang, B., El-Sappah, H., Zhu, Y., Zhou, W., Zhao, X., Li, J. (2021). Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi Journal of Biological Sciences, 28, 6946-6956. doi:10.1016/j.sjbs.2021.07.073
Sarwar, M. J., Zahir, Z. A., Asghar, H. N., Shabaan, M., & Ayyub, M. (2023). Co-application of organic amendments and Cd-tolerant rhizobacteria for suppression of cadmium uptake and regulation of antioxidants in tomato. Chemosphere, 327, 138478. doi:10.1016/j.chemosphere.2023.138478
Silva, G., Oliveira, A. (2014). Genes acting on transcriptional control during abiotic stress responses. 1-7. doi:10.1155/2014/587070
Singh, G., Yadav, G., Singh, A., Singh, D., , M., & , K. (2021). Estimation of gene action involved in inheritance of yield and yield attributing traits in tomato (Solanum lycopersicum L.). Journal of Pharmacognosy and Phytochemistry, 10(1), 2868-2871.
Steel, R.G.D., Torrie, J.H., Dickey, D.A., (1997). Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed. McGraw-Hill, New York, 666p.
Xian, P., Yang, Y., Xiong, C., Guo, Z., Alam, I., He, Z., Zhang, Y., Cai, Z., Nian, H. (2023). Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds. Frontiers in Plant Science, 14, 1133892. doi:10.3389/fpls.2023.1133892
Yadav, S., Yadav, G., Kumar, V., & Yadav, D. (2017). Gene action studies in tomato (Solanum lycopersicon (Mill.) Wettsd.) For growth, yield and quality traits. The Pharma Innovation Journal, 6(12), 430-432.
Ye, J., Wang, X., Wang, W., Yu, H., Ai, G., Li, C., Sun, P., Wang, X., Li, H., Ouyang, B., Zhang, J., Zhang, Y., Han, H., Giovannoni, J., Fei, Z., & Ye, Z. (2021). Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiology, 186(4), 2078-2092. doi:10.1093/plphys/kiab230
Zhang, F., Wan, X., Zheng, Y., Sun, L., Chen, Q., Guo, Y., et al. (2014). Physiological and related anthocyanin biosynthesis genes responses induced by cadmium stress in a new colored-leaf plant “Quanhong poplar”. Agroforestry Systems, 88, 343-355. doi: 10.1007/s10457-014-9687-4
Zhang, J., Zhu, Q., Yu, H., Li, L., Zhang, G., Chen, X., Jiang, M., Tan, M. (2019). Comprehensive analysis of the cadmium tolerance of abscisic acid-, stress- and ripening-induced proteins (ASRs) in maize. International Journal of Molecular Sciences, 20(1), 133. doi:10.3390/ijms20010133
Zhao, L., Zhu, Y. H., Wang, M., Ma, L. G., Han, Y. G., Zhang, M. J., et al. (2021). Comparative transcriptome analysis of the hyperaccumulator plant Phytolacca americana in response to cadmium stress. 3Biotech, 11(7), 327. doi: 10.1007/s13205-021-02865-x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Khalid M. AL-ROHİLY, Mohamed Ali ABDELSATAR, Raed Ammar ALSUFYANİ , Abdulrahman BİN JUMAH, Maha M. ALSUBAİE, Burhan Zain FAKHURJİ, Haya R. ALZANNAN, Mohamed M. HASSONA

This work is licensed under a Creative Commons Attribution 4.0 International License.