Morphological characteristics of hatching eggs and hatching dynamics in Prelux-Č and Prelux-G laying hybrids and their relationship with chick sex
DOI:
https://doi.org/10.14720/aas.2025.121.3.22603Keywords:
poultry, chicken, genotype, egg morphology, egg storage, hatch window, chick sexAbstract
This study examined the morphological characteristics of hatching eggs from two Slovenian layer hybrids, Prelux-Č and Prelux-G, and investigated their relationship with hatch window and chick sex. The results showed significant (p ≤ 0.05) genotype-specific differences in egg morphology, hatching time and chick weight at hatch. Compared to Prelux-G eggs, Prelux-Č eggs were significantly (p ≤ 0.05) narrower, lighter and had paler shell pigmentation. Chicks from Prelux-Č eggs hatched earlier and had a significantly (p ≤ 0.05) lower body weight than chicks from Prelux-G eggs. The hatch window of the Prelux-G hybrids was 56 hours, while that of the Prelux-Č hybrids was 64 hours. In the Prelux-Č hybrids, the pullets hatched earlier than the cockerels, while no significant sex-specific differences in hatching time were observed in the Prelux-G hybrids. The duration of egg storage prior to incubation also influenced hatch timing, with chicks from eggs stored for seven days hatching later than chicks from eggs stored for two days; however, this difference was only statistically significant (p ≤ 0.05) in the Prelux-Č. The statistical analysis showed no significant correlation (p > 0.05) between the external egg characteristics and the sex of the chicks, indicating the limited predictive value of egg morphology for sex determination.
Metrics
Downloads
References
Ahmed, M. W., Sprigler, A., Emmert, J. L., Kamruzzaman, M. (2025). Non‑destructive pre‑incubation sex determination in chicken eggs using hyperspectral imaging and machine learning. Food Control, 173, 111233. https://doi.org/10.1016/j.foodcont.2025.111233
Anjana, P., Bhanja, S. K., Hyder, B., Gaikwad, S. A. (2024). Developing predictive models for sex determination based on egg weight, length and width in White Leghorn laying hens. Journal of Veterinary and Animal Sciences 55(4), 744–747. https://doi.org/10.51966/jvas.2024.55.4.744-747
Associated Press, 2024. The US egg industry kills 350 million chicks a year. New technology offers an alternative. AP News, December 19, 2024. Retrieved from: https://apnews.com/article/eggs-chicks-hens-iowa-e9ffd6ed93582a76adf3a4a16aadbf12 (accessed Aug 14, 2025)
Bruijnis, M. R. N., Blok, V., Stassen, E. N., Gremmen, H. G. J. (2015). Moral “lock-in” in responsible innovation: The ethical and social aspects of killing day-old chicks and its alternatives. Journal of Agricultural and Environmental Ethics, 28, 939–960. https://doi.org/10.1007/s10806-015-9566-7
Biesiada-Drzazga, B. (2020). Evaluation of eggs in terms of hatching capability. Acta Scientiarum Polonorum Zootechnica, 19(2), 11–18. https://doi.org/10.21005/asp.2020.19.2.02
Burke, W. H. (1992). Sex differences in incubation length and hatching weights of broiler chicks. Poultry Science, 71(11), 1933–1938. https://doi.org/10.3382/ps.0711933
Burnham, W., Sandfort, C., Belthoff, J. R. (2003). Peregrine falcon eggs: egg size, hatchling sex, and clutch sex ratios. The Condor, 105(2), 327–335. https://doi.org/10.1093/condor/105.2.327
Ching, C. T. S., Wang, C. K., Tang, P. C., Ha, M. K., Li, C., Chiu, H. N., ... Phan, T. L. (2023). Bioimpedance-measurement-based non-invasive method for in ovo chicken egg sexing. Biosensors, 13(4), 440. https://doi.org/10.3390/bios13040440
Cobb-Vantress. 2020. Cobb Hatchery Management Guide. Retrieved from https://www.cobb-vantress.com/resource/management-guides/
Cook, M. I., Monaghan, P. (2004). Sex differences in embryo development periods and effects on avian hatching patterns. Behavioral Ecology, 15(2), 205–209. https://doi.org/10.1093/beheco/arg096
Doran, T. J., Morris, K. R., Wise, T. G., O’Neil, T. E., Cooper, C. A., Jenkins, K. A., Tizard, M. L. V. (2017). Sex selection in layer chickens. Animal Production Science, 57(8), 1435–1441. https://doi.org/10.1071/AN16785
Duursma, D. E., Gallagher, R. V., Price, J. J., Griffith, S. C. (2018). Variation in avian egg shape and nest structure is explained by climatic conditions. Scientific Reports, 8, 4141. https://doi.org/10.1038/s41598-018-22436-0
Hammershøj, M., Kristiansen, G. H., Steenfeldt, S. (2021). Dual-purpose poultry in organic egg production and effects on egg quality parameters. Foods, 10(4), 897. https://doi.org/10.3390/foods10040897
He, L., Martins, P., Huguenin, J., Van, T. N. N., Manso, T., Galindo, T., ... Espeut, J. (2019). Simple, sensitive and robust chicken specific sexing assays, compliant with large scale analysis. PLOS ONE, 14(3), e0213033. https://doi.org/10.1371/journal.pone.0213033
Hedlund, L., Jensen, P. (2021). Incubation and hatching conditions of laying hen chicks explain a large part of the stress effects from commercial large-scale hatcheries. Poultry Science, 100(1), 1–8. https://doi.org/10.1016/j.psj.2020.10.015
Hukkanen, M., Hsu, B. Y., Cossin-Sevrin, N., Crombecque, M., Delaunay, A., Hollmen, L., ... Ruuskanen, S. (2023). From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression: An experimental study in a wild bird species. Evolutionary Applications, 16(10), 1753–1769. https://doi.org/10.1111/eva.13598
Ioannidis, J., Taylor, G., Zhao, D., Liu, L., Idoko-Akoh, A., Gong, D., ... Clinton, M. (2021). Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proceedings of the National Academy of Sciences, 118(10), e2020909118. https://doi.org/10.1073/pnas.2020909118
Iqbal, J., Khan, S. H., Mukhtar, N., Ahmad, T., Pasha, R. A. (2014). Effects of egg size (weight) and age on hatching performance and chick quality of broiler breeder. Journal of Applied Animal Research, 44(1), 54–64. https://doi.org/10.1080/09712119.2014.987294
Ji, C., Song, K., Chen, Z., Wang, S., Xu, H., Tu, K., Pan, L., et al. (2024). Nondestructive in-ovo sexing of Hy-Line Sonia eggs by EggFormer using hyperspectral imaging. Computers and Electronics in Agriculture, 225, 109298. https://doi.org/10.1016/j.compag.2024.109298
Jia, N., Li, B., Zhu, J., Wang, H., Zhao, Y., Zhao, W. (2023). A review of key techniques for in ovo sexing of chicken eggs. Agriculture, 13(3), 677. https://doi.org/10.3390/agriculture13030677
Kaleta, E. F., Redmann, T. (2008). Approaches to determine the sex prior to and after incubation of chicken eggs and of day-old chicks. World‘s Poultry Science Journal, 64(3), 391–399. https://doi.org/10.1017/S0043933908000111
Kayadan, M., Uzun, Y. (2023). High accuracy gender determination using the egg shape index. Scientific Reports, 13(1), 504. https://doi.org/10.1038/s41598-023-27772-4
Lourens, A., Molenaar, R., van den Brand, H., Heetkamp, M. J. W., Kemp, B. (2006). Effect of egg size on heat production and the transition of energy from egg to hatchling. Poultry Science, 85(4), 770–776. https://doi.org/10.1093/ps/85.4.770
Lourens, A., van den Brand, H., Heetkamp, M. J. W., Meijerhof, R., Kemp, B. (2007). Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poultry Science, 86(10), 2194–2199. https://doi.org/10.1093/ps/86.10.2194
Matsumoto, S., Ogino, A., Onoe, K., Ukon, J., Ishigaki, M. (2024). Chick sexing based on the blood analysis using Raman spectroscopy. Scientific Reports, 14(1), 15999. https://doi.org/10.1038/s41598-024-65998-y
Mesquita, M. A., Araújo, I. C. S., Café, M. B., Arnhold, E., Mascarenhas, A. G., Carvalho, F. B., Stringhini, J. H., Leandro, N. S. M., Gonzales, E. (2021). Results of hatching and rearing broiler chickens in different incubation systems. Poultry Science, 100(1), 94–102. https://doi.org/10.1016/j.psj.2020.09.028
Nangsuay, A., Ruangpanit, Y., Meijerhof, R., Attamangkune, S. (2011). Yolk absorption and embryo development of small and large eggs originating from young and old breeder hens. Poultry Science, 90(11), 2648–2655. https://doi.org/10.3382/ps.2011-01415
Nasri, H., van den Brand, H., Najar, T., Bouzouaia, M. (2020). Interactions between egg storage duration and breeder age on selected egg quality, hatching results, and chicken quality. Animals, 10(10), 1719. https://doi.org/10.3390/ani10101719
Olsen, M. W. (1968). Changes in level of parthenogenetic development in turkey eggs during two testing seasons. Poultry Science, 47(6), 2015–2016. https://doi.org/10.3382/ps.0472015
Parker, H. M., Kiess, A. S., Wells, J. B., Young, K. M., Rowe, D., McDaniel, C. D. (2010). Genetic selection increases parthenogenesis in Chinese painted quail (Coturnix chinensis). Poultry Science, 89(7), 1468–1472. https://doi.org/10.3382/ps.2009-00388
Peebles, E. D. (2023). Understanding the effects of humidity/air composition on embryo and post-hatch chick development. In N. French (Ed.), Embryo development and hatchery practice in poultry production (pp. 303–330). Cambridge, UK: Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2022.0118.16
Popova, T., Petkov, E., Ignatova, M., Vlahova-Vangelova, D., Balev, D., Dragoev, S., Kolev, N. (2022). Male layer-type chickens — an alternative source for high quality poultry meat: a review on the carcass composition, sensory characteristics and nutritional profile. Brazilian Journal of Poultry Science, 24(3), 1–10. https://doi.org/10.1590/1806-9061-2021-1615
Priesemeister, J. (2024, June 14). In-Ovo Sexing. Egg-Truth. Retrieved from https://www.egg-truth.com/egg-blog/inovosexing?utm_source=chatgpt.com
Quansah, E. S., Urwin, N. A. R., Strappe, P., Raidal, S. (2013). Progress towards generation of transgenic lines of chicken with a green fluorescent protein gene in the female specific (W) chromosome by sperm-mediated gene transfer. Advances in Genetic Engineering, 2, 29.
Reijrink, I. A. M., Berghmans, D., Meijerhof, R., Kemp, B., van den Brand, H. (2010). Influence of egg storage time and preincubation warming profile on embryonic development, hatchability, and chick quality. Poultry Science, 89(6), 1225–1238. https://doi.org/10.3382/ps.2009-00182
Schreuder, J., Niknafs, S., Williams, P., Roura, E., Hoffman, L.C., Cozzolino, D. (2024). Non-destructive prediction of fertility and sex in chicken eggs using the short wave near-infrared region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 322, 124716. https://doi.org/10.1016/j.saa.2024.124716
Simmons, R. E. 2000. Sex ratio and egg size manipulation. In: R. E. Simmons (Ed.), Harriers of the World: Their Behaviour and Ecology, Chapter 7 (pp. 198–226). Oxford, UK: Oxford University Press. https://doi.org/10.1093/oso/9780198549642.003.0007
Sklan, D., Noy, Y., Hoyzman, A., Rozenboim, I. (2000). Decreasing weight loss in the hatchery by feeding chicks and poults in hatching trays. Journal of Applied Poultry Research, 9(2), 142–148. https://doi.org/10.1093/japr/9.2.142
Uçar, A., Kahya, Y. (2024). The comparison of weight and shape-related traits in eggs from different chicken genotypes. Turkish Journal of Agriculture–Food Science and Technology, 12(12), 2571–2578. https://doi.org/10.24925/turjaf.v12i12.2571-2578.7298
Van der Hofstadt, M., l’Helgoualch, N., Houot‑Cernettig, J., Galindo, T., Manso, T., Martins, P.G.A., Huguenin, J., et al. (2025). Advancing in ovo egg sexing through molecular sex identification of chick embryos using LAMP and RPA assays. Scientific Reports, 15, 27712. https://doi.org/10.1038/s41598-025-13013-3
Wedzerai, M. (2021). Ethical concerns remain with in-ovo gender determination. Poultry World. Retrieved from https://www.poultryworld.net/poultry/ethical-concerns-remain-with-in-ovo-gender-determination/
Westmoreland, D., Schmitz, M., Burns, K. E. (2007). Egg color as an adaptation for thermoregulation. Journal of Field Ornithology, 78(2), 176–183. https://doi.org/10.1111/j.1557-9263.2007.00101.x
Yalcin, S., Özkan, S., Shah, T. (2022). Incubation temperature and lighting: effect on embryonic development, post-hatch growth, and adaptive response. Frontiers in Physiology, 13, 899977. https://doi.org/10.3389/fphys.2022.899977
Zhang, D., Jacobs, L. (2025). Morphology‑based in‑ovo sexing of chick embryos utilizing a low‑cost imaging apparatus and machine learning. Animals, 15(3), 384. https://doi.org/10.3390/ani15030384
Zhang, X., Li, J., Chen, S., Yang, N., Zheng, J. (2023). Overview of avian sex reversal. International Journal of Molecular Sciences, 24(9), 8284. https://doi.org/10.3390/ijms24098284
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dušan TERČIČ, Pina ROHAN

This work is licensed under a Creative Commons Attribution 4.0 International License.