Mass spectrometry in snake venom research

Authors

  • Adrijana Leonardi Institut »Jožef Stefan«, Odsek za molekularne in biomedicinske znanosti, Jamova 39, 1000 Ljubljana, Slovenija

DOI:

https://doi.org/10.14720/abs.65.2.12499

Keywords:

antivenomics, common adder, mass spectrometry, meadow viper, nose-horned viper, proteomics, snake venom, venomics, Vipera a. ammodytes, Vipera b. berus, Vipera ursinii

Abstract

Mass spectrometry allows rapid and reliable identification and characterisation of proteins and peptides in snake venoms. With the increasing availability of transcriptomic and genomic data, there is a growing database of protein sequences that is essential for protein identification. Snake venoms are analysed using a multi-dimensional proteomic approach known as ‚venomics‘. Proteins are first separated by one- or two-dimensional gel electrophoresis or reversed-phase liquid chromatography. The individual protein spots or fractions are digested enzymatically and the resulting peptides are analysed by mass spectrometry. The proteins are identified by comparing the mass spectra of the peptides with those in the database. High-performance mass spectrometers allow the analysis of venoms even without prior separation of the protein mixture. We have analysed the protein composition (proteome) of two European snake venoms of greatest medical interest, the nose-horned viper (Vipera a. ammodytes) and the common adder (Vipera b. berus). The nose-horned viper is the most venomous European snake. Although its bite is rarely fatal, a human wictim often needs to be observed in hospital and treated with an antivenom. The adder is the most widespread European venomous snake and its bite causes milder symptoms than the bite of the nose-horned viper in most cases. To explain the observed differences in the effects of the two venoms at the molecular level, a proteomic study was performed. We also analysed the proteome of the venom of the meadow viper (Vipera ursinii), the most threatened snake species in Europe. It does not pose a threat to humans. In the wild, it feeds mainly on insects, while in captivity it is fed on mice. A comparison of the proteome of the venom of snakes in the wild and snakes in captivity showed clear differences. Thus, the composition of snake venom is diet-dependent. Mass spectrometry is also a very useful tool in the characterisation of antivenoms (antivenomics) to determine their specificity and neutralising power.

References

Abd El-Aziz, T.M., Soares, A.G., Stockand, J.D., 2020. Advances in venomics: Modern separation techniques and mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1160, 122352. DOI: https://doi.org/10.1016/j.jchromb.2020.122352

Ahmad, Y., Sharma, N., 2009. An effective method for the analysis of human plasma proteome using two-dimensional gel electrophoresis. Journal of Proteomics and Bioinformatics, 2 (12), 495–499. DOI: https://doi.org/10.4172/jpb.1000111

Ainsworth, S., Petras, D., Engmark, M., Süssmuth, R.D., Whiteley, G., Albulescu, L.-O., Kazandjian, T.D., Wagstaff, S.C., Rowley, P., Wüster, W., Dorrestein, P.C., Arias, A.S., Gutiérrez, J. M., Harrison, R A., Casewell, N.R., Calvete, J.J., 2018. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling DOI: https://doi.org/10.1016/j.jprot.2017.08.016

of available antivenoms. Journal of Proteomics, 172, 173–189.

Aird, S.D., Aggarwal, S., Villar-Briones, A., Tin, M.M.-Y., Terada, K., Mikheyev, A.S., 2015. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genomics, 16 (1), 647. DOI: https://doi.org/10.1186/s12864-015-1832-6

Alencar, L.R.V, Quental, T.B., Grazziotin, F.G., Alfaro, M.L., Martins, M., Venzon, M., Zaher, H., 2016. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution, 105, 50–62. DOI: https://doi.org/10.1016/j.ympev.2016.07.029

Al-Shekhadat, R.I., Lopushanskaya, K.S., Segura, Á., Gutiérrez, J.M., Calvete, J.J., Pla, D., 2019. Vipera berus berus venom from Russia: Venomics, bioactivities and preclinical assessment of microgen antivenom. Toxins, 11 (2), 642–651. DOI: https://doi.org/10.3390/toxins11020090

Amazonas, D.R., Freitas-de-Sousa, L.A., Orefice, D.P., Sousa, L.F. de, Martinez, M.G., Mourão, R.H.V., Chalkidis, H.M., Camargo, P.B., Moura-da-Silva, A.M, 2019. Evidence for snake venom plasticity in a long-term study with individual captive Bothrops atrox. Toxins, 11 (5), 294. DOI: https://doi.org/10.3390/toxins11050294

Amr, Z.S., Abu Baker, M.A., Warrell, D.A., 2020. Terrestrial venomous snakes and snakebites in the Arab countries of the Middle East. Toxicon, 177, 1–15. DOI: https://doi.org/10.1016/j.toxicon.2020.01.012

Barlow, A., Pook, C.E., Harrison, R.A., Wüster, W., 2009. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings. Biological Sciences, 276 (1666), 2443–2449. DOI: https://doi.org/10.1098/rspb.2009.0048

Barua, A., Mikheyev, A.S., 2020. An ancient, conserved gene regulatory network led to the rise of oral venom systems. BioRxiv, 1–10. DOI: https://doi.org/10.1101/2020.08.06.240747

Acta Biologica Slovenica, 2022, 65 (2), 5–25 22 DOI: https://doi.org/10.14720/abs.65.2.12499

Bocian, A., Urbanik, M., Hus, K., Łyskowski, A., Petrilla, V., Andrejčáková, Z., Petrillová, M., Legath, J., 2016. Proteome and peptidome of Vipera berus berus venom. Molecules, 21 (10), 1–13. DOI: https://doi.org/10.3390/molecules21101398

Calvete, J.J., Juárez, P., Sanz, L., 2007. Snake venomics. Strategy and applications. Journal of Mass Spectrometry. 42 (11), 1405-1414. DOI: https://doi.org/10.1002/jms.1242

Calvete, J.J., Sanz, L., Angulo, Y., Lomonte, B., Gutiérrez, J M., 2009. Venoms, venomics, antivenomics. DOI: https://doi.org/10.1016/j.febslet.2009.03.029

FEBS Letters, 583 (11), 1736–1743.

Casewell, N.R., Wagstaff, S. C., Harrison, R.A., Renjifo, C., Wüster, W., 2011. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Molecular Biology and Evolution, 28 (9), 2637–2649. DOI: https://doi.org/10.1093/molbev/msr091

Castellanos-Serra, L., Vallin, A., Proenza, W., Le Caer, J.P., Rossier, J., 2001. An optimized procedure for detection of proteins on carrier ampholyte isoelectric focusing and immobilized pH gradient gels with imidazole and zinc salts: Its application to the identification of isoelectric focusing separated isoforms by in-gel proteolys. Electrophoresis, 22 (9), 1677–1685. DOI: https://doi.org/10.1002/1522-2683(200105)22:9<1677::AID-ELPS1677>3.0.CO;2-H

Chen, C., Hou, J., Tanner, J. J., Cheng, J., 2020. Bioinformatics methods for mass spectrometry-based proteomics data analysis. International Journal of Molecular Sciences, 21 (8), 2873. DOI: https://doi.org/10.3390/ijms21082873

Chippaux, J.P., Williams, V., White, J., 1991. Snake venom variability: methods of study, results and interpretation. Toxicon, 29 (11), 1279–1303. DOI: https://doi.org/10.1016/0041-0101(91)90116-9

Chippaux, J.-P, 2017. Snakebite envenomation turns again into a neglected tropical disease. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23 (1), 38. DOI: https://doi.org/10.1186/s40409-017-0127-6

Damm, M., Hempel, B.F., Süssmuth, R.D, 2021. Old world vipers-a review about snake venom proteomics of Viperinae and their variations. Toxins, 13 (6), 1–26. DOI: https://doi.org/10.3390/toxins13060427

Di Nicola, M.R., Pontara, A., Kass, G.E.N., Kramer, N.I., Avella, I., Pampena, R., Mercuri, S.R., Dorne, J.L.C.M., Paolino, G., 2021. Vipers of major clinical relevance in Europe: Taxonomy, venom composition, toxicology and clinical management of human bites. Toxicology, 453, 152724. DOI: https://doi.org/10.1016/j.tox.2021.152724

Fry, B.G., Roelants, K., Champagne, D.E., Scheib, H., Tyndall, J.D., King, G.F., Nevalainen, T.J., Norman, J. a, Lewis, R.J., Norton, R.S., Renjifo, C., de la Vega, R.C.R., 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annual Review of Genomics and Human Genetics, 10, 483–511. DOI: https://doi.org/10.1146/annurev.genom.9.081307.164356

Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M., Betzel, C., 2008. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. Journal of Proteome Research, 7 (3), 866–886. DOI: https://doi.org/10.1021/pr070376c

Ghezellou, P., Garikapati, V., Kazemi, S.M., Strupat, K., Ghassempour, A., Spengler, B., 2019. A perspective view of top-down proteomics in snake venom research. Rapid Communications in Mass Spectrometry, 33 (S1), 20–27. DOI: https://doi.org/10.1002/rcm.8255

Gibbs, H.L., Sanz, L., Sovic, M.G., Calvete, J.J., 2013. Phylogeny-based comparative analysis of venom proteome variation in a clade of rattlesnakes (Sistrurus sp.). PLoS ONE, 8 (6), e67220. DOI: https://doi.org/10.1371/journal.pone.0067220

Göçmen, B., Heiss, P., Petras, D., Nalbantsoy, A., Süssmuth, R. D., 2015. Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica. Toxicon, 107, 163–174. DOI: https://doi.org/10.1016/j.toxicon.2015.09.013

Gopcevic, K., Karadzic, I., Izrael-Zivkovic, L., Medic, A., Isakovic, A., Popović, M., Kekic, D., Stanojkovic, T., Hozic, A., Cindric, M., 2021. Study of the venom proteome of Vipera ammodytes ammodytes (Linnaeus, 1758): A qualitative overview, biochemical and biological profiling. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 37, 100776. DOI: https://doi.org/10.1016/j.cbd.2020.100776

Gutiérrez, J.M., Escalante, T., Rucavado, A, 2009. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon, 54 (7), 976–987. DOI: https://doi.org/10.1016/j.toxicon.2009.01.039

Gutiérrez, J.M., Williams, D., Fan, H.W., Warrell, D.A., 2010. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon, 56 (7), 1223–1235. DOI: https://doi.org/10.1016/j.toxicon.2009.11.020

Gutiérrez, J.M., Calvete, J.J., Habib, A.G., Harrison, R.A., Williams, D.J., Warrell, D.A., 2017. Snakebite envenoming. Nature Reviews Disease Primers, 3, 17063. DOI: https://doi.org/10.1038/nrdp.2017.63

Leonardi: Venomika in antivenomika kačjih strupov 23

Hempel, B.F., Damm, M., Göçmen, B., Karis, M., Oguz, M.A., Nalbantsoy, A., Süssmuth, R. D., 2018. Comparative venomics of the Vipera ammodytes transcaucasiana and Vipera ammodytes montandoni from Turkey provides insights into kinship. Toxins, 10 (1), 23. DOI: https://doi.org/10.3390/toxins10010023

Hempel, B.F., Damm, M., Mrinalini, Göçmen, B., Karlş, M., Nalbantsoy, A., Kini, R. M., Süssmuth, R. D., 2020. Extended snake venomics by top-down in-source decay: Investigating the newly discovered Anatolian meadow viper subspecies, Vipera anatolica senliki. Journal of Proteome Research, 19 (4), 1731–1749. DOI: https://doi.org/10.1021/acs.jproteome.9b00869

Karabuva, S., Vrkić, I., Brizić, I., Ivić, I., Lukšić, B, 2016a. Venomous snakebites in children in southern Croatia. Toxicon, 112, 8–15. DOI: https://doi.org/10.1016/j.toxicon.2016.01.057

Karabuva, S., Brizić, I., Latinović, Z., Leonardi, A., Križaj, I., Lukšić, B., 2016b. Cardiotoxic effects of the Vipera ammodytes ammodytes venom fractions in the isolated perfused rat heart. Toxicon, 121, 98-104. DOI: https://doi.org/10.1016/j.toxicon.2016.09.001

Karabuva, S., Lukšić, B., Brizić, I., Latinović, Z., Leonardi, A., Križaj, I., 2017. Ammodytin L is the main cardiotoxic component of the Vipera ammodytes ammodytes venom. Toxicon, 139, 94–100. DOI: https://doi.org/10.1016/j.toxicon.2017.10.003

Kini, R.M., 2018. Accelerated evolution of toxin genes: Exonization and intronization in snake venom disintegrin/metalloprotease genes. Toxicon, 148, 16–25. DOI: https://doi.org/10.1016/j.toxicon.2018.04.005

Kovalchuk, S.I., Ziganshin, R.H., Starkov, V.G., Tsetlin, V.I., Utkin, Y.N., 2016. Quantitative proteomic analysis of venoms from Russian vipers of Pelias group: Phospholipases A2 are the main venom components. Toxins, 8 (4), 105. DOI: https://doi.org/10.3390/toxins8040105

Križaj, I. (2011). Ammodytoxin: A window into understanding presynaptic toxicity of secreted phospholipases A2 and more. Toxicon, 58 (3), 219–229. DOI: https://doi.org/10.1016/j.toxicon.2011.06.009

Lang Balija, M., Vrdoljak, A., Habjanec, L., Dojnović, B., Halassy, B., Vranesić, B., Tomasić, J., 2005. The variability of Vipera ammodytes ammodytes venoms from Croatia–biochemical properties and biological activity. Comparative Biochemistry and Physiology. Part C: Toxicology Pharmacology, 140 (2), 257–263. DOI: https://doi.org/10.1016/j.cca.2005.02.008

Lang Balija, M., Leonardi, A., Brgles, M., Sviben, D., Kurtović, T., Halassy, B., Križaj, I., 2020. biological activities and proteomic profile of the venom of Vipera ursinii ssp., a very rare karst viper from Croatia. Toxins, 12 (3), 1–16. DOI: https://doi.org/10.3390/toxins12030187

Latinović, Z., Leonardi, A., Šribar, J., Sajevic, T., Žužek, M. C., Frangež, R., Halassy, B., Trampuš-Bakija, A., Pungerčar, J., Križaj, I., 2016. Venomics of Vipera berus berus to exsplain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: Therapeutic implications. Journal of Proteomics, 146, 34–47. DOI: https://doi.org/10.1016/j.jprot.2016.06.020

Leonardi, A., Sajevic, T., Pungerčar, J., Križaj, I., 2019. Comprehensive study of the proteome and transcriptome of the venom of the most venomous European viper: Discovery of a new subclass of ancestral snake venom metalloproteinase precursor-derived proteins. Journal of Proteome Research, 18 (5), 2287–2309. DOI: https://doi.org/10.1021/acs.jproteome.9b00120

Lingam, T.M.C., Tan, K.Y., Tan, C.H., 2020. Proteomics and antivenom immunoprofiling of Russell’s viper (Daboia siamensis) venoms from Thailand and Indonesia. Journal of Venomous Animals and Toxins Including Tropical Diseases, 26, e20190048. DOI: https://doi.org/10.1590/1678-9199-jvatitd-2019-0048

Lomonte, B., Calvete, J.J., 2017. Strategies in “snake venomics” aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23 (1), 1–12. DOI: https://doi.org/10.1186/s40409-017-0117-8

Luksić, B., Bradarić, N., Prgomet, S., 2006. Venomous snakebites in southern Croatia. Collegium Antropologicum, 30 (1), 191–197.

Malina, T., Krecsák, L., Westerström, A., Szemán-Nagy, G., Gyémánt, G., M-Hamvas, M., Rowan, E.G., Harvey, A.L., Warrell, D.A., Pál, B., Rusznák, Z., Vasas, G, 2017. Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary. Toxicon, 135, 59–70. DOI: https://doi.org/10.1016/j.toxicon.2017.06.004

Mebs, D. 2002: Venomous and poisonous animals: a handbook for biologists, toxicologists and toxinologists, physicians and pharmacists, Medpharm Scientific Publishers, Stuttgart, 360 pp.

Melani, R.D., Skinner, O.S., Fornelli, L., Domont, G.B., Compton, P.D., Kelleher, N.L., 2016. Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics. Molecular and Cellular Proteomics, 15 (7), 2423–2434. DOI: https://doi.org/10.1074/mcp.M115.056523

Melby, J.A., Roberts, D.S., Larson, E.J., Brown, K.A., Bayne, E.F., Jin, S., Ge, Y., 2021. Novel strategies to address the challenges in top-down proteomics. Journal of the American Society for Mass Spectrometry, 32 (6), 1278–1294. DOI: https://doi.org/10.1021/jasms.1c00099

Miller, I., Crawford, J., Gianazza, E., 2006. Protein stains for proteomic applications: Which, when, why? Proteomics, 6 (20), 5385–5408. DOI: https://doi.org/10.1002/pmic.200600323

Núñez, V., Cid, P., Sanz, L., De La Torre, P., Angulo, Y., Lomonte, B., Gutiérrez, J. M., Calvete, J.J., 2009. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, 73 (1), 57–78. DOI: https://doi.org/10.1016/j.jprot.2009.07.013

Ogawa, T., Nakashima, K., Nobuhisa, I., Deshimaru, M., Shimohigashi, Y., Fukumaki, Y., Sakaki, Y., Hattori, S., Ohno, M., 1996. Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions. Toxicon, 34 (11–12), 1229–1236. DOI: https://doi.org/10.1016/S0041-0101(96)00112-2

Patra, A., Kalita, B., Chanda, A., Mukherjee, A.K, 2017. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Scientific Reports, 7 (1), 17119. DOI: https://doi.org/10.1038/s41598-017-17227-y

Petras, D., Hempel, B.F., Göçmen, B., Karis, M., Whiteley, G., Wagstaff, S.C., Heiss, P., Casewell, N.R., Nalbantsoy, A., Süssmuth, R.D., 2019. Intact protein mass spectrometry reveals intraspecies variations in venom composition of a local population of Vipera kaznakovi in Northeastern Turkey. Journal of Proteomics, 199, 31–50. DOI: https://doi.org/10.1016/j.jprot.2019.02.004

Pintor, A.F.V, Ray, N., Longbottom, J., Bravo-Vega, C.A., Yousefi, M., Murray, K.A., Ediriweera, D.S., Diggle, P.J., 2021. Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction. Toxicon: X, 11, 100076. DOI: https://doi.org/10.1016/j.toxcx.2021.100076

Pla, D., Bande, B.W., Welton, R.E., Paiva, O.K., Sanz, L., Segura, Á., Wright, C.E., Calvete, J.J., Gutiérrez, J.M., Williams, D.J., 2017a. Proteomics and antivenomics of Papuan black snake (Pseudechis papuanus) venom with analysis of its toxicological profile and the preclinical efficacy of Australian antivenoms. Journal of Proteomics, 150, 201–215. DOI: https://doi.org/10.1016/j.jprot.2016.09.007

Pla, D., Rodríguez, Y., Calvete, J. J., 2017b. Third generation antivenomics: Pushing the limits of the in vitro preclinical assessment of antivenoms. Toxins, 9 (5), 158. DOI: https://doi.org/10.3390/toxins9050158

Požek, K., Leonardi, A., Pungerčar, J., Rao, W., Gao, Z., Liu, S., Laustsen, A.H., Trampuš Bakija, A., Reberšek, K., Podgornik, H., Križaj, I., 2022. Genomic confirmation of the P-IIIe subclass of snake venom metalloproteinases and characterisation of its first member, a Disintegrin-like/Cysteine-rich protein. Toxins, 14 (4), 232. DOI: https://doi.org/10.3390/toxins14040232

Sajevic, T., Leonardi, A., Križaj, I., 2014. An overview of hemostatically active components of Vipera ammodytes ammodytes venom. Toxin Reviews, 33 (1–2), 33–36. DOI: https://doi.org/10.3109/15569543.2013.835827

Sanny, C.G, 2011. In vitro evaluation of total venom-antivenin immune complex formation and binding parameters relevant to antivenin protection against venom toxicity and lethality based on size-exclusion high-performance liquid chromatography. Toxicon, 57 (6), 871–881. DOI: https://doi.org/10.1016/j.toxicon.2011.03.003

Schaffer, L.V, Millikin, R.J., Miller, R.M., Anderson, L.C., Fellers, R.T., Ge, Y., Kelleher, N.L., LeDuc, R.D., Liu, X., Payne, S.H., Sun, L., Thomas, P.M., Tucholski, T., Wang, Z., Wu, S., Wu, Z., Yu, D., Shortreed, M.R., Smith, L. M., 2019. Identification and quantification of proteoforms by mass spectrometry. Proteomics, 19 (10), e1800361. DOI: https://doi.org/10.1002/pmic.201800361

Šmíd, J., Tolley, K.A., 2019. Calibrating the tree of vipers under the fossilized birth-death model. Scientific Reports, 9 (1), 1–10. DOI: https://doi.org/10.1038/s41598-019-41290-2

Tan, K.Y., Wong, K.Y., Tan, N.H., Tan, C.H., 2020. Quantitative proteomics of Naja annulifera (sub-Saharan snouted cobra) venom and neutralization activities of two antivenoms in Africa. International Journal of Biological Macromolecules, 158, 605–616. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.173

Leonardi: Venomika in antivenomika kačjih strupov 25

Tasoulis, T., Isbister, G.K, 2017. A review and database of snake venom proteomes. Toxins, 9 (9), 9–10. DOI: https://doi.org/10.3390/toxins9090290

Tasoulis, T., Pukala, T.L., Isbister, G.K., 2021. Investigating toxin diversity and abundance in snake venom proteomes. Frontiers in Pharmacology, 12, 768015. DOI: https://doi.org/10.3389/fphar.2021.768015

Tastet, C., Lescuyer, P., Diemer, H., Luche, S., van, D.A., Rabilloud, T., 2003. A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 24, 1787–1794. DOI: https://doi.org/10.1002/elps.200305400

Uetz, P., Freed, P, Aguilar, R., Hošek, J. (eds.), 2022. The Reptile Database, http://www.reptile-database. org, accessed November 2022.

Uradni list RS, 1993. https://www.uradni-list.si/glasilo-uradni-list-rs/vsebina/1993-01-2094/

Villalta, M., Pla, D., Yang, S.L., Sanz, L., Segura, A., Vargas, M., Chen, P.Y., Herrera, M., Estrada, R.,

Cheng, Y.F., Lee, C.D., Cerdas, M., Chiang, J.R., Angulo, Y., León, G., Calvete, J.J., Gutiérrez, J.M., 2012. Snake venomics and antivenomics of Protobothrops mucrosquamatus and Viridovipera stejnegeri from Taiwan: keys to understand the variable immune response in horses. Journal of Proteomics, 75 (18), 5628–5645. DOI: https://doi.org/10.1016/j.jprot.2012.08.008

Villar-Briones, A., Aird, S.D., 2018. Organic and peptidyl constituents of snake venoms: The picture is vastly more complex than we imagined. Toxins, 10 (10), 392. DOI: https://doi.org/10.3390/toxins10100392

Downloads

Published

01.12.2022

How to Cite

Leonardi, A. (2022). Mass spectrometry in snake venom research. Acta Biologica Slovenica, 65(2), 5-25. https://doi.org/10.14720/abs.65.2.12499

Funding data

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)