Optical properties of different structures of some herbaceous understorey plant species from temperate deciduous forests

Authors

  • Alenka Gaberščik University in Ljubljana, Biotechnical Faculty, Dept. of Biology
  • Matej Holcar University in Ljubljana, Biotechnical faculty, Dept. of Biology
  • Mateja Grašič Agricultural Institute of Slovenia

DOI:

https://doi.org/10.14720/abs.65.2.13187

Keywords:

bracts, leaves, light conditions, optical properties, sepals, temperate deciduous forest, understorey plants

Abstract

This contribution discusses the optical properties of different structures of some herbaceous understorey plant species from temperate deciduous and mixed forests. These forests are marked by annual dynamics of radiation level that is related to the vegetation cycle of forest trees. During winter and early spring, the understorey is exposed to full solar radiation, whilelater in the growing season radiation is limited due to the closing of the tree storey. The plasticity of optical properties ofphotosynthetic structures of understorey plants is directly related to their structural and biochemical phenotypic plasticity that optimises harvesting and use of energy. The optimisation of energy harvesting is also achieved by specific adaptations of green leaves, such as variegation (Pulmonaria officinalis, Cyclamen sp.), anthocyanic lower epidermis (Cyclamen sp.), and by using structures other than green leaves for photosynthesis, such as bracts (Hacquetia epipactis) and sepals (Helleborus sp.). The optical properties of these structures are similar to those of green leaves. The understanding of optical responses of different structures contributes to the understanding of the forest understorey functioning.

References

Arnold, S.E.J., Faruq, S., Savolainen, V., McOwan, P.W., Chittka, L., 2010. FReD: The floral reflectance database - A web portal for analyses of flower colour. PLoS ONE, 5, 12, e14287.

Aschan, G., Pfanz, H., 2003. Non-foliar photosynthesis - a strategy of additional carbon acquisition. Flora - morphology, distribution, functional ecology of plants, 198, 2, 81–97.

Aschan, G., Pfanz, H., Vodnik, D., Batič, F., 2005. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica, 43, 1, 55–64.

Asner, G., Martin, R., 2008. Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 10, 3958–3970.

Baldini, E., Facini, O., Nerozzi, F., Rossi, F., Rotondi, A., 1997. Leaf characteristics and optical properties of different woody species. Trees, 12, 2, 73.

von Balthazar, M., Endress, P.K., 1999. Floral bract function, flowering process and breeding systems of Sarcandra and Chloranthus (Chloranthaceae). Plant Systematics and Evolution, 218, 3–4, 161–178.

Baltzer, J.L., Thomas, S.C., 2005. Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. American Journal of Botany, 92, 2, 214–223.

Bavcon, J., Vreš, B., Mlinar, C., Smolej, H., Batič, F., Praprotnik, N., Šiftar, A., 2012. Telohi (Helleborus L.) v Sloveniji = Helleborus (Helleborus L.) in Slovenia. Ljubljana: Botanični vrt Univerze.

Boeger, M.R.T., Poulson, M.E., 2003. Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquatic Botany, 75, 2, 123–135.

Bongers, F.J., Douma, J.C., Iwasa, Y., Pierik, R., Evers, J.B., Anten, N.P.R., 2019. Variation in plastic responses to light results from selection in different competitive environments - A game theoretical approach using virtual plants. PLOS Computational Biology, 15, 8, e1007253.

Carter, G.A., Spiering, B.A., 2002. Optical properties of intact leaves for estimating chlorophyll concentration. Journal of Environmental Quality, 31, 5, 1424–1432.

Castro, K., Sanchez-Azofeifa, G., 2008. Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors, 8, 1, 51–69.

Castro-Esau, K.L., Sanchez-Azofeifa, G.A., Rivard, B., Wright, S.J., Quesada, M., 2006. Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. American Journal of Botany, 93, 4, 517–530.

Chalker-Scott, L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70, 1, 1–9.

Chazdon, R.L., Pearcy, R.W., 1991. The importance of sunflecks for forest understory plants. BioScience, 41, 11, 760–766.

Coops, N.C., Stone, C., 2005. A comparison of field-based and modelled reflectance spectra from damaged Pinus radiata foliage. Australian Journal of Botany, 53, 5, 417.

Darcy, A.J., Burkart, M.C., 2002. Allelopathic potential of Vinca minor, an invasive exotic plant in West Michigan Forests. Bios, 73, 4, 127–132.

Demmig-Adams, B., Adams, W.W., 1996. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198, 3, 460–470.

Ellenberg, H., 1996. Vegetation Mitteleuropas mit den Alpen: In ökologischer, dynamischer und historischer Sicht. Stuttgart: UTB.

Esteban, R., Fernández-Marín, B., Becerril, J.M., García-Plazaola, J.I., 2008. Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L. Journal of Plant Physiology, 165, 12, 1255–1263.

Evans, J.R., Poorter, H., 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 8, 755–767.

Fassou, G., Kougioumoutzis, K., Iatrou, G., Trigas, P., Papasotiropoulos, V., 2020. Genetic diversity and range dynamics of Helleborus odorus subsp. cyclophyllus under different climate change scenarios. Forests, 11, 6, 620.

Filella, I., Peñuelas, J., 1999. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecology, 145, 1, 157–165.

Gaberščik, A., Novak, M., Trošt, T., Mazej, Z., Germ, M., Björn, L.O., 2001. The influence of enhanced UV-B radiation on the spring geophyte Pulmonaria officinalis. In: Rozema, J., Manetas, Y., Björn,

L.O. (eds) Responses of Plants to UV-B Radiation. Advances in Vegetation Science, vol 18. Springer, Dordrecht. pp 49–56.

Gagliardi, K.B., Cordeiro, I., Demarco, D., 2018. Structure and development of flowers and inflorescences in Peraceae and Euphorbiaceae and the evolution of pseudanthia in Malpighiales W. O. Wong (ed). PLOS ONE, 13, 10, e0203954.

Gilliam, F., 2014. The herbaceous layer in forests of Eastern North America. Oxford University Press. Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N., 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75, 3, 272.

Gitelson, A., Arkebauer, T., Solovchenko, A., Nguy-Robertson, A., Inoue, Y., 2022. An insight into spectral composition of light available for photosynthesis via remotely assessed absorption coefficient at leaf and canopy levels. Photosynthesis Research, 151, 1, 47–60.

Gould, K.S., Kuhn, D.N., Lee, D.W., Oberbauer, S.F., 1995. Why leaves are sometimes red. Nature, 378, 6554, 241–242.

Gould, K.S., 2004. Nature’s Swiss Army Knife: The diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology, 2004, 5, 314–320.

Grašič, M., Sovdat, T., Gaberščik, A., 2020. Frond optical properties of the fern Phyllitis scolopendrium depend on light conditions in the habitat. Plants, 9, 10, 1–15.

Grašič, M., Dacar, M., Gaberščik, A., 2021 b. Comparative study of temporal changes in pigments and optical properties in sepals of Helleborus odorus and H. niger from Prebloom to seed production. Plants, 11, 1, 119.

Grašič, M., Planinc, G., Gaberščik, A., 2021 a. Bracts and basal leaves in Hacquetia epipactis differ in their spectral signatures. Biologia, 76, 3, 831–840.

Herrera, C.M., 2005. Post-floral perianth functionality: contribution of persistent sepals to seed development in Helleborus foetidus (Ranunculaceae). American Journal of Botany, 92, 9, 1486–1491.

Holmes, M.G., Keiller, D.R., 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant, Cell & Environment, 25, 1, 85–93.

Hughes, N.M., Carpenter, K.L., Keidel, T.S., Miller, C.N., Waters, M.N., Smith, W.K., 2014. Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in Colocasia esculenta ‘Mojito’. Planta, 240, 5, 971–981.

Hughes, N.M., Vogelmann, T.C., Smith, W.K., 2008. Optical effects of abaxial anthocyanin on absorption of red wavelengths by understorey species: revisiting the back-scatter hypothesis. Journal of Experimental Botany, 59, 12, 3435–3442.

Kim, H.J., Jung, J. B., Jang, Y.L., Sung, J.H., Park, P.S., 2015. Effects of experimental early canopy closure on the growth and reproduction of spring ephemeral Erythronium japonicum in a montane deciduous forest. Journal of Plant Biology, 58, 3, 164–174.

Klančnik, K., Gaberščik, A., 2016. Leaf spectral signatures differ in plant species colonizing habitats along a hydrological gradient. Journal of Plant Ecology, 9, 4, 442–450.

Klančnik, K., Levpušček, M., Gaberščik, A., 2016. Variegation and red abaxial epidermis define the leaf optical properties of Cyclamen purpurascens. Flora, 224 87–95.

Klančnik, K., Mlinar, M., Gaberščik, A., 2012. Heterophylly results in a variety of “spectral signatures” in aquatic plant species. Aquatic Botany, 98, 1, 20–26.

Klančnik, K., Pančić, M., Gaberščik, A., 2014 a. Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia, 737, 1, 121–130.

Klančnik, K., Vogel-Mikuš, K., Gaberščik, A., 2014 b. Silicified structures affect leaf optical properties in grasses and sedge. Journal of Photochemistry and Photobiology B: Biology, 130 1–10.

Klančnik, K., Zelnik, I., Gnezda, P., Gaberščik, A., 2015. Do Reflectance Spectra of Different Plant Stands in Wetland Indicate Species Properties? In: Vymazal, J. (ed). The Role of Natural and Constructed Wet- lands in Nutrient Cycling and Retention on the Landscape, 73–86. Springer International Publishing. Klomberg, Y., Dywou Kouede, R., Bartoš, M., Mertens, J.E.J., Tropek, R., Fokam, E.B., Janeček, Š., 2019.

The role of ultraviolet reflectance and pattern in the pollination system of Hypoxis camerooniana (Hypoxidaceae). AoB PLANTS, 11, 5.

Konoplyova, A., Petropoulou, Y., Yiotis, C., Psaras, G.K., Manetas, Y., 2008. The fine structure and photosynthetic cost of structural leaf variegation. Flora - Morphology, Distribution, Functional Ecology of Plants, 203, 8, 653–662.

Kováč, D., Malenovský, Z., Urban, O., Špunda, V., Kalina, J., Ač, A., Kaplan, V., Hanuš, J., 2013. Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles. Journal of Experimental Botany, 64, 7, 1817–1827.

Lambers, H., Chapin, F.S., Pons, T.L., 1998. Plant physiological ecology. New York: Springer-Verlag.

Landi, M., Tattini, M., Gould, K.S., 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119 4–17.

Larcher, W., 2003. Physiological Plant Ecology. Berlin, Heidelberg: Springer Berlin Heidelberg. Leakey, A.D.B., 2004. Physiological and ecological significance of sunflecks for dipterocarp seedlings. Journal of Experimental Botany, 56, 411, 469–482.

Lee, D.W., Lowry, J.B., Stone, B.C., 1979. Abaxial anthocyanin layer in leaves of tropical rain forest plants: Enhancer of light capture in deep shade. Biotropica, 11, 1, 70.

Lee, D.W., Oberbauer, S.F., Johnson, P., Krishnapilay, B., Mansor, M., Mohamad, H., Yap, S.K., 2000. Effects of irradiance and spectral quality on leaf structure and function in seedlings of two Southeast Asian Hopea (Dipterocarpaceae) species. American Journal of Botany, 87, 4, 447–455.

Lee, D.W., Collins, T.M., 2001. Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. International Journal of Plant Sciences, 162, 5, 1141–1153. Levizou, E., Drilias, P., Psaras, G.K., Manetas, Y., 2005. Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co‐occur. New Phytologist, 165, 2, 463–472.

Lev-Yadun, S., 2002. Colour patterns in vegetative parts of plants deserve more research attention. Trends in Plant Science, 7, 2, 59–60.

Liew, O., Chong, P., Li, B., Asundi, A., 2008. Signature optical cues: Emerging technologies for monitoring plant health. Sensors, 8, 5, 3205–3239.

Lukeš, P., Stenberg, P., Rautiainen, M., Mõttus, M., Vanhatalo, K.M., 2013. Optical properties of leaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4, 7, 667–676.

Marín, S. de T., Novák, M., Klančnik, K., Gaberščik, A., 2016. Spectral signatures of conifer needles mainly depend on their physical traits. Polish Journal of Ecology, 64, 1, 1–13.

Noda, H.M., Motohka, T., Murakami, K., Muraoka, H., Nasahara, K.N., 2013. Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectro- radiometer. Plant, Cell & Environment, 36, 10, 1903–1909.

Popović, Z., Mijović, A., Karadzić, B., Mijatovič, M., 2006. Response of Growth Dynamics of Two Spring Geophytes to Light Regime in a Lime-Beech Forest. Journal of Integrative Plant Biology, 48, 5, 527–535.

Prado, J.J., Schiavini, I., Vale, V., Lopes, S., Arantes, C., Oliveira, A.P., 2015. Functional leaf traits of understory species: strategies to different disturbance severities. Brazilian Journal of Biology 75, 339–346. Rascio, N., Cuccato, F., Dalla Vecchia, F., la Rocca, N., Larcher, W., 1999. Structural and functional features of the leaves of Ranunculus trichophyllus Chaix., a freshwater submerged macrophophyte. Plant, Cell and Environment, 22, 2, 205–212.

Reich, P.B., Wright, I.J., Cavender‐Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. International Journal of Plant Sciences, 164, S3, S143–S164.

la Rocca, N., Rascio, N., Pupillo, P., 2011. Variegation in Arum italicum leaves. A structural–functional study. Plant Physiology and Biochemistry, 49, 12, 1392–1398.

la Rocca, N., Pupillo, P., Puppi, G., Rascio, N., 2014. Erythronium dens-canis L. (Liliaceae): An unusual case of change of leaf mottling. Plant Physiology and Biochemistry, 74 108–117.

Roelofsen, H.D., van Bodegom, P.M., Kooistra, L., Witte, J.P.M., 2014. Predicting leaf traits of herbaceous species from their spectral characteristics. Ecology and Evolution, 4, 6, 706–719.

Ross, J., 1981. The radiation regime and architecture of plant stands. The Hague: Dr W Junk. Rothstein, D.E., Zak, D.R., 2001. Photosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs. Functional Ecology, 15, 6, 722–731.

Salopek-Sondi, B., 2002. Developing fruit direct post-floral morphogenesis in Helleborus niger L. Journal of Experimental Botany, 53, 376, 1949–1957.

Salopek-Sondi, B., Kovač, M., Ljubešić, N., Magnus, V., 2000. Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. Journal of Plant Physiology, 157, 4, 357–364.

Santos, J. dos, Marenco, R.A., Ferreira, W.C., Dias, D.P., 2021. Leaflet phenotypic plasticity in three woody species in two strata of a gallery forest. CERNE, 27.

Schmitzer, V., Mikulic-Petkovsek, M., Stampar, F., 2013. Sepal phenolic profile during Helleborus niger flower development. Journal of Plant Physiology, 170, 16, 1407–1415.

Schulze, E., Beck, E., Müller-Hohenstein, K., 2005. Plant ecology. Berlin Heidelberg: Springer-Verlag. Shahri, W., Tahir, I., Islam, S.T., Bhat, M.A., 2011. Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis Lam. cv. Olympicus. Physiology and Molecular Biology of Plants, 17, 1, 33–39.

Sheue, C.-R., Pao, S.-H., Chien, L.-F., Chesson, P., Peng, C.-I., 2012. Natural foliar variegation without costs? The case of Begonia. Annals of Botany, 109, 6, 1065–1074.

Slaton, M.R., Raymond Hunt, E., Smith, W.K., 2001. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany, 88, 2, 278–284.

Smillie, R.M., Hetherington, S.E., 1999. Photoabatement by Anthocyanin Shields Photosynthetic Systems from Light Stress. Photosynthetica, 36, 3, 451–463.

Sommer, R.J., 2020. Phenotypic Plasticity: From Theory and Genetics to Current and Future Challenges. Genetics, 215, 1, 1–13.

Šraj Kržič, N., Gaberščik, A., 2005. Photochemical efficiency of amphibious plants in an intermittent lake. Aquatic Botany, 83, 4, 281–288.

Tsukaya, H., Okada, H., Mohamed, M., 2004. A novel feature of structural variegation in leaves of the tropical plant Schismatoglottis calyptrata. Journal of Plant Research, 117, 6, 477–480.

Ullah, S., Schlerf, M., Skidmore, A.K., Hecker, C., 2012. Identifying plant species using mid-wave infrared (2.5–6μm) and thermal infrared (8–14μm) emissivity spectra. Remote Sensing of Environment, 118 95–102.

Ustin, S.L., Jacquemoud, S., Govaerts, Y., 2001. Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis. Plant, Cell and Environment, 24 1095–1103.

Valladares, F., Wright, S.J., Lasso, E., Kitajima, K., Pearcy, R.W., 2000. Plastic phenotypic response to light of 16 congeneric shrubs from a panamanian rainforest. Ecology, 81, 7, 1925.

Valladares, F., 2003. Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. In: Progress in Botany, 64, Springer-Verlag Berlin. Heidelberg, pp. 439–471.

Valladares, F., Gianoli, E., Gómez, J.M., 2007. Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 4, 749–763.

Wang, Z.-X., Fan, S.-T., Chen, L., Zhao, Y., Yang, Y.-M., Ai, J., Li, X.-Y., Liu, Y.-X., Qin, H.-Y., 2015. Actinidia kolomikta leaf colour and optical characteristics. Biologia Plantarum, 59, 4, 767–772.

Wang, Z.-X., Shi, G.-L., Chen, L., Sun, D., Xu, P.-L., Qin, H.-Y., 2020. Lower photosynthetic capacity under higher spectral reflectance? The case of Actinidia polygama. Biologia Plantarum, 64 616–622.

Warren, R.J., Lake, J.K., 2013. Trait plasticity, not values, best corresponds with woodland plant success in novel and manipulated habitats. Journal of Plant Ecology, 6, 3, 201–210.

Woolley, J.T., 1971. Reflectance and transmittance of light by leaves. Plant Physiology, 47, 5, 656–662. Yoshimura, H., Zhu, H., Wu, Y., Ma, R., 2010. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction. International Journal of Biometeorology, 54, 2, 179–191.

Zhang, Y., Hayashi, T., Hosokawa, M., Yazawa, S., Li, Y., 2009. Metallic lustre and the optical mechanism generated from the leaf surface of Begonia rex Putz. Scientia Horticulturae, 121, 2, 213–217.

Downloads

Published

01.12.2022

How to Cite

Gaberščik, A., Holcar, M., & Grašič, M. (2022). Optical properties of different structures of some herbaceous understorey plant species from temperate deciduous forests. Acta Biologica Slovenica, 65(2), 26-41. https://doi.org/10.14720/abs.65.2.13187

Funding data

Most read articles by the same author(s)

1 2 > >>